Haruhiko Fujiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575761/publications.pdf

Version: 2024-02-01

90 papers

6,027 citations

87723 38 h-index 74018 75 g-index

91 all docs 91 docs citations 91 times ranked 4974 citing authors

#	Article	IF	Citations
1	Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic <i>Papilio</i> butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	8
2	Genetic switch in UV response of mimicry-related pale-yellow colors in Batesian mimic butterfly, <i>Papilio polytes</i> . Science Advances, 2021, 7, .	4.7	15
3	Batesian mimicry has evolved with deleterious effects of the pleiotropic gene doublesex. Scientific Reports, 2020, 10, 21333.	1.6	5
4	Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm. Scientific Reports, 2020, 10, 8963.	1.6	5
5	Notch and Delta Control the Switch and Formation of Camouflage Patterns in Caterpillars. IScience, 2020, 23, 101315.	1.9	7
6	Molecular Mechanisms Underlying Pupal Protective Color Switch in Papilio polytes Butterflies. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	10
7	The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Communications Biology, 2019, 2, 257.	2.0	23
8	Prepatterning of <i>Papilio xuthus</i> caterpillar camouflage is controlled by three homeobox genes: <i>clawless</i> , <i>abdominal-A</i> , and <i>Abdominal-B</i> . Science Advances, 2019, 5, eaav7569.	4.7	22
9	Parallel evolution of Batesian mimicry supergene in two <i>Papilio</i> butterflies, <i>P. polytes</i> and <i>P. memnon</i> . Science Advances, 2018, 4, eaao5416.	4.7	48
10	The pivotal role of aristaless in development and evolution of diverse antennal morphologies in moths and butterflies. BMC Evolutionary Biology, 2018, 18, 8.	3.2	4
11	Toll ligand SpÃtzle3 controls melanization in the stripe pattern formation in caterpillars. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8336-8341.	3.3	40
12	Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genetics, 2017, 13, e1006548.	1.5	53
13	Identification of doublesex alleles associated with the female-limited Batesian mimicry polymorphism in Papilio memnon. Scientific Reports, 2016, 6, 34782.	1.6	25
14	Functional analysis of genes involved in color pattern formation in Lepidoptera. Current Opinion in Insect Science, 2016, 17, 16-23.	2.2	29
15	The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals. PLoS ONE, 2016, 11, e0163496.	1.1	14
16	A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature Genetics, 2015, 47, 405-409.	9.4	215
17	Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori. Journal of Insect Physiology, 2015, 80, 31-41.	0.9	3
18	The transcription factor Apontic-like controls diverse colouration pattern in caterpillars. Nature Communications, 2014, 5, 4936.	5.8	41

#	Article	IF	Citations
19	Development of a cell-based assay for ecdysteroid quantification using an early ecdysteroid-inducible gene promoter. Applied Entomology and Zoology, 2014, 49, 443-452.	0.6	2
20	Periodic Wnt1 expression in response to ecdysteroid generates twin-spot markings on caterpillars. Nature Communications, 2013, 4, 1857.	5.8	52
21	Electroporation-mediated somatic transgenesis for rapid functional analysis in insects. Development (Cambridge), 2013, 140, 454-458.	1.2	73
22	Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes. Scientific Reports, 2013, 3, 3184.	1.6	44
23	Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus. BMC Biology, 2012, 10, 46.	1.7	56
24	Two Adjacent cis-Regulatory Elements Are Required for Ecdysone Response of Ecdysone Receptor (EcR) B1 Transcription. PLoS ONE, 2012, 7, e49348.	1.1	12
25	RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57, 231-245.	0.9	729
26	Dramatic changes in patterning gene expression during metamorphosis are associated with the formation of a feather-like antenna by the silk moth, Bombyx mori. Developmental Biology, 2011, 357, 53-63.	0.9	10
27	Coevolution of Telomeric Repeats and Telomeric Repeat–Specific Non-LTR Retrotransposons in Insects. Molecular Biology and Evolution, 2011, 28, 2983-2986.	3.5	22
28	siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos. PLoS ONE, 2011, 6, e25469.	1.1	67
29	Caterpillar color patterns are determined by a twoâ€phase melanin gene prepatterning process: new evidence from <i>tan</i> and <i>laccase2</i> . Evolution & Development, 2010, 12, 157-167.	1.1	94
30	Speciesâ€specific coordinated gene expression and <i>trans</i> àê•regulation of larval color pattern in three swallowtail butterflies. Evolution & Development, 2010, 12, 305-314.	1.1	41
31	Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nature Structural and Molecular Biology, 2010, 17, 513-518.	3.6	182
32	Identification of stage-specific larval camouflage associated genes in the swallowtail butterfly, Papilio xuthus. Development Genes and Evolution, 2008, 218, 491-504.	0.4	31
33	Female-specific wing degeneration is triggered by ecdysteroid in cultures of wing discs from the bagworm moth, Eumeta variegata (Insecta: Lepidoptera, Psychidae). Cell and Tissue Research, 2008, 333, 169-173.	1.5	13
34	<i>yellow</i> and <i>ebony</i> Are the Responsible Genes for the Larval Color Mutants of the Silkworm <i>Bombyx mori</i> . Genetics, 2008, 180, 1995-2005.	1.2	126
35	Positional Cloning of a Bombyx Wingless Locus <i>flul gellos</i> (<i>fl</i>) Reveals a Crucial Role for <i>fringe</i> That Is Specific for Wing Morphogenesis. Genetics, 2008, 179, 875-885.	1.2	31
36	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255

#	Article	lF	CITATIONS
37	Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1138-1146.	1.2	163
38	Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1046-1057.	1.2	113
39	Juvenile Hormone Regulates Butterfly Larval Pattern Switches. Science, 2008, 319, 1061-1061.	6.0	68
40	Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Research, 2007, 35, 3918-3927.	6.5	18
41	A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements. Virus Research, 2007, 127, 49-60.	1.1	10
42	In vivo gene transfer into the honeybee using a nucleopolyhedrovirus vector. Biochemical and Biophysical Research Communications, 2007, 352, 335-340.	1.0	18
43	Regulation of 20-hydroxyecdysone on the larval pigmentation and the expression of melanin synthesis enzymes and yellow gene of the swallowtail butterfly, Papilio xuthus. Insect Biochemistry and Molecular Biology, 2007, 37, 855-864.	1.2	58
44	Characterization of core promoter elements for ecdysone receptor isoforms of the silkworm, Bombyx mori. Insect Molecular Biology, 2007, 16, 253-264.	1.0	11
45	Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene, 2006, 376, 281-289.	1.0	68
46	Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus. Insect Biochemistry and Molecular Biology, 2006, 36, 63-70.	1.2	32
47	EcR expression in the prothoracicotropic hormone-producing neurosecretory cells of the Bombyx mori brain FEBS Journal, 2006, 273, 3861-3868.	2.2	15
48	Essential Domains for Ribonucleoprotein Complex Formation Required for Retrotransposition of Telomere-Specific Non-Long Terminal Repeat Retrotransposon SART1. Molecular and Cellular Biology, 2006, 26, 5168-5179.	1.1	26
49	Identification of rDNA-Specific Non-LTR Retrotransposons in Cnidaria. Molecular Biology and Evolution, 2006, 23, 1984-1993.	3.5	43
50	Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Development Genes and Evolution, 2005, 215, 519-529.	0.4	114
51	Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Research, 2005, 13, 455-467.	1.0	91
52	Long-Term Inheritance of the 28S rDNA-Specific Retrotransposon R2. Molecular Biology and Evolution, 2005, 22, 2157-2165.	3.5	73
53	An extraordinary retrotransposon family encoding dual endonucleases. Genome Research, 2005, 15, 1106-1117.	2.4	34
54	Eukaryotic Translational Coupling in UAAUG Stop-Start Codons for the Bicistronic RNA Translation of the Non-Long Terminal Repeat Retrotransposon SART1. Molecular and Cellular Biology, 2005, 25, 7675-7686.	1.1	33

#	Article	IF	Citations
55	Functional roles of 3'-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Research, 2005, 33, 1993-2002.	6.5	25
56	Essential Motifs in the $3\hat{a}\in^2$ Untranslated Region Required for Retrotransposition and the Precise Start of Reverse Transcription in Non-Long-Terminal-Repeat Retrotransposon SART1. Molecular and Cellular Biology, 2004, 24, 7902-7913.	1.1	41
57	Crystal Structure of the Endonuclease Domain Encoded by the Telomere-specific Long Interspersed Nuclear Element, TRAS1. Journal of Biological Chemistry, 2004, 279, 41067-41076.	1.6	21
58	Targeted Nuclear Import of Open Reading Frame 1 Protein Is Required for In Vivo Retrotransposition of a Telomere-Specific Non-Long Terminal Repeat Retrotransposon, SART1. Molecular and Cellular Biology, 2004, 24, 105-122.	1.1	26
59	Cross-Genome Screening of Novel Sequence-Specific Non-LTR Retrotransposons: Various Multicopy RNA Genes and Microsatellites Are Selected as Targets. Molecular Biology and Evolution, 2003, 21, 207-217.	3.5	82
60	Evolution of Target Specificity in R1 Clade Non-LTR Retrotransposons. Molecular Biology and Evolution, 2003, 20, 351-361.	3.5	58
61	Ecdysteroid-dependent expression of a novel cuticle protein gene BMCPG1 in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2002, 32, 599-607.	1.2	36
62	Identification and characterization of genes abnormally expressed in wing-deficient mutant (flýgellos) of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2002, 32, 691-699.	1.2	19
63	Complex and Tandem Repeat Structure of Subtelomeric Regions in the Taiwan Cricket, Teleogryllus taiwanemma. Journal of Molecular Evolution, 2002, 54, 474-485.	0.8	11
64	Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO Journal, 2002, 21, 408-417.	3.5	63
65	Immunoblotting detection of gamma-catenin (plakoglobin) antibody in the serum of a patient with paraneoplastic pemphigus. British Journal of Dermatology, 2001, 144, 377-379.	1.4	14
66	Structural and Phylogenetic Analysis of TRAS, Telomeric Repeat-Specific Non-LTR Retrotransposon Families in Lepidopteran Insects. Molecular Biology and Evolution, 2001, 18, 848-857.	3.5	46
67	Sequence-Specific Recognition and Cleavage of Telomeric Repeat (TTAGG) n by Endonuclease of Non-Long Terminal Repeat Retrotransposon TRAS1. Molecular and Cellular Biology, 2001, 21, 100-108.	1.1	53
68	Detection and distribution patterns of telomerase activity in insects. FEBS Journal, 2000, 267, 3025-3031.	0.2	72
69	Expression of ecdysteroid-regulated genes is reduced specifically in the wing discs of the wing-deficient mutant (fl) of Bombyx mori. Development Genes and Evolution, 2000, 210, 120-128.	0.4	56
70	Stability and Telomere Structure of Chromosomal Fragments in Two Different Mosaic Strains of the Silkworm, Bombyx mori. Zoological Science, 2000, 17, 743-750.	0.3	19
71	Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori. Nucleic Acids Research, 1999, 27, 2015-2021.	6.5	35
72	A New Family of Site-Specific Retrotransposons, SART1, Is Inserted into Telomeric Repeats of the Silkworm, Bombyx Mori. Nucleic Acids Research, 1997, 25, 1578-1584.	6.5	95

#	Article	IF	Citations
73	Tissue-Specific and Stage-Specific Expression of Two Silkworm Ecdysone Receptor Isoforms. Ecdysteroid-Dependent Transcription in Cultured Anterior Silk Glands. FEBS Journal, 1997, 248, 786-793.	0.2	98
74	Developmental profiles of wing imaginal discs of fl $\tilde{A}^{1}/4$ gellos (fl), a wingless mutant of the silkworm, Bombyx mori. Development Genes and Evolution, 1997, 207, 12-18.	0.4	17
75	Reciprocal transplantation of wing discs between a wing deficient mutant (fl) and wild type of the silkworm, Bombyx mori. Development Growth and Differentiation, 1997, 39, 599-606.	0.6	8
76	Structural Analysis of TRAS1, a Novel Family of Telomeric Repeat-Associated Retrotransposons in the Silkworm, <i>Bombyx mori</i> . Molecular and Cellular Biology, 1995, 15, 4545-4552.	1.1	107
77	Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, <i>Bombyx mori</i> Genetical Research, 1995, 66, 1-7.	0.3	78
78	Cloning of an ecdysone receptor homolog from Manduca sexta and the developmental profile of its mRNA in Wings. Insect Biochemistry and Molecular Biology, 1995, 25, 845-856.	1.2	170
79	Mosaic formation by developmental loss of a chromosomal fragment in a ?mottled striped? mosaic strain of the silkworm, Bombyx mori. Roux's Archives of Developmental Biology, 1994, 203, 389-396.	1.2	7
80	RFLP analysis of chromosomal fragments in genetic mosaic strains of Bombyx mori. Chromosoma, 1994, 103, 468-474.	1.0	2
81	Identification of a Pentanucleotide Telomeric Sequence, (TTAGG) <i>_n</i> , in the SilkwormBombyx mori and in Other Insects. Molecular and Cellular Biology, 1993, 13, 1424-1432.	1.1	111
82	Chromosomal fragment responsible for genetic mosaicism in larval body marking of the silkworm, Bombyx mori. Genetical Research, 1991, 57, 11-16.	0.3	22
83	What causes the aphid 28S rRNA to lack the hidden break?. Journal of Molecular Evolution, 1990, 30, 509-513.	0.8	23
84	Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori. Chromosoma, 1988, 96, 263-269.	1.0	25
85	Structure of theBombyx morirDNA: initiation site for its transcription. Nucleic Acids Research, 1987, 15, 1245-1258.	6.5	26
86	Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucleic Acids Research, 1986, 14, 6393-6401.	6.5	71
87	Introns and their flanking sequences ofBombyx morirDNA. Nucleic Acids Research, 1984, 12, 6861-6869.	6.5	53
88	Primary and secondary structure of S.8S rRNA from the silkgbnd ofBombyx mori. Nucleic Acids Research, 1982, 10, 2415-2418.	6.5	16
89	Primary and secondary structures of Tetrahymenaand aphid 5.8S rRNAs: Structural features of 5.8S rRNA which interacts with the 28S rRNA containing the hidden break. Nucleic Acids Research, 1982, 10, 5173-5182.	6.5	18
90	doublesex Controls Both Hindwing and Abdominal Mimicry Traits in the Female-Limited Batesian Mimicry of Papilio memnon. Frontiers in Insect Science, 0, 2, .	0.9	4