Timothy M Kusky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: implications for the origin of lake depression in Mongolia. Physical Geography, 2022, 43, 727-752.	1.4	4
2	From subduction initiation to hot subduction: Life of a Neoarchean subduction zone from the Dengfeng Greenstone Belt, North China Craton. Bulletin of the Geological Society of America, 2022, 134, 1277-1300.	3.3	7
3	New SIMS zircon U-Pb ages and oxygen isotope data for ophiolite nappes in the Eastern Desert of Egypt: Implications for Gondwana assembly. Gondwana Research, 2022, 105, 450-467.	6.0	10
4	Ophiolites and ocean plate stratigraphy (OPS) preserved across the Central Mongolian Microcontinent: A new mega-archive of data for the tectonic evolution of the Paleo-Asian Ocean. Gondwana Research, 2022, 105, 51-83.	6.0	8
5	Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha'apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)?. Journal of Earth Science (Wuhan, China), 2022, 33, 229-235.	3.2	13
6	Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambrian Research, 2022, 368, 106487.	2.7	21
7	Giant sheath-folded nappe stack demonstrates extreme subhorizontal shear strain in an Archean orogen. Geology, 2022, 50, 577-582.	4.4	9
8	Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117529119.	7.1	40
9	Vestiges of early Earth's deep subduction and CHONSP cycle recorded in Archean ophiolitic podiform chromitites. Earth-Science Reviews, 2022, 227, 103968.	9.1	18
10	Advanced land imager superiority in lithological classification utilizing machine learning algorithms. Arabian Journal of Geosciences, 2022, 15, .	1.3	11
11	Greece and Turkey Shaken by African tectonic retreat. Scientific Reports, 2021, 11, 6486.	3.3	19
12	Mesozoic compressional to extensional tectonics in the Central East Iranian Microcontinent: evidence from the Boneh Shurow metamorphic core complex. Journal of the Geological Society, 2021, 178, .	2.1	8
13	Extreme sulfur isotope fractionation of hydrothermal auriferous pyrites from the SW fringe of the Taupo Volcanic Zone, New Zealand: Implications for epithermal gold exploration. Results in Geochemistry, 2021, 3, 100009.	0.8	1
14	Neoarchean to Paleoproterozoic tectonothermal evolution of the North China Craton: Constraints from geological mapping and Th-U-Pb geochronology of zircon, titanite and monazite in Zanhuang Massif. Precambrian Research, 2021, 359, 106214.	2.7	11
15	Podiform chromitite genesis in an Archean juvenile forearc setting: The 2.55 Ga Zunhua chromitites, North China Craton. Lithos, 2021, 394-395, 106194.	1.4	8
16	Ultra-high pressure inclusion in Archean ophiolitic podiform chromitite in mélange block suggests deep subduction on early Earth. Precambrian Research, 2021, 362, 106318.	2.7	18
17	Neoproterozoic tectonics of the Jiangnan orogen: The magmatic record of continental growth by arc and slab-failure magmatism from 1000 to 780ÂMa. Precambrian Research, 2021, 362, 106319.	2.7	4
18	Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth-Science Reviews, 2021, 220, 103725.	9.1	38

#	Article	IF	CITATIONS
19	Density and viscosity changes between depleted and primordial mantle at â^1⁄41000 km depth influence plume upwelling behavior. Earth and Planetary Science Letters, 2021, 576, 117213.	4.4	8
20	Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature Communications, 2021, 12, 6172.	12.8	31
21	Identification of the Neoarchean Jianping pyroxenite-mélange in the Central Orogenic Belt, North China Craton: A fore-arc accretional assemblage. Precambrian Research, 2020, 336, 105495.	2.7	18
22	Mantle degassing related to changing redox and thermal conditions during the Precambrian supercontinent cycle. Precambrian Research, 2020, 350, 105895.	2.7	6
23	Mélanges through time: Life cycle of the world's largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges. Earth-Science Reviews, 2020, 209, 103303.	9.1	68
24	From subduction initiation to arc–polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton. Precambrian Research, 2020, 350, 105868.	2.7	23
25	Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Research, 2020, 88, 296-332.	6.0	32
26	Paired metamorphism in the Neoarchean: A record of accretionary-to-collisional orogenesis in the North China Craton. Earth and Planetary Science Letters, 2020, 543, 116355.	4.4	68
27	Plate tectonics in relation to mantle temperatures and metamorphic properties. Science China Earth Sciences, 2020, 63, 634-642.	5.2	19
28	Documentation of the Sirjan Orocline in the southeast Sanandaj-Sirjan Zone, Iran. Journal of Mountain Science, 2020, 17, 528-541.	2.0	1
29	Structural anatomy of the early Paleozoic Laohushan ophiolite and subduction complex: Implications for accretionary tectonics of the Proto-Tethyan North Qilian orogenic belt, northeastern Tibet. Bulletin of the Geological Society of America, 2020, 132, 2175-2201.	3.3	18
30	Neoarchean seafloor hydrothermal metamorphism of basalts in the Zanhuang ophiolitic mélange, North China Craton. Precambrian Research, 2020, 347, 105832.	2.7	8
31	A Neoarchean arc-backarc pair in the Linshan Massif, southern North China Craton. Precambrian Research, 2020, 341, 105649.	2.7	15
32	The Early Palaeozoic megaâ€ŧhrusting of the Gondwanaâ€derived Altay–Lake zone in western Mongolia: Implications for the development of the Central Asian Orogenic Belt and Paleoâ€Asian Ocean evolution. Geological Journal, 2020, 55, 2129-2149.	1.3	10
33	Structural relationships and kinematics of the Neoarchean Dengfeng forearc and accretionary complexes, southern North China craton. Bulletin of the Geological Society of America, 2019, 131, 966-996.	3.3	26
34	Coulomb stress change pattern and aftershock distributions associated with a blind low-angle megathrust fault, Nepalese Himalaya. Tectonophysics, 2019, 767, 228161.	2.2	5
35	Age and genesis of the Neoarchean Algoma-type banded iron formations from the Dengfeng greenstone belt, southern North China Craton: Geochronological, geochemical and Sm–Nd isotopic constraints. Precambrian Research, 2019, 333, 105437.	2.7	18
36	Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton. Bulletin of the Geological Society of America, 2019, 131, 1943-1964.	3.3	83

#	Article	IF	CITATIONS
37	Rapid cooling history of a Neotethyan ophiolite: Evidence for contemporaneous subduction initiation and metamorphic sole formation. Bulletin of the Geological Society of America, 2019, 131, 2011-2038.	3.3	19
38	The Role of Earth's Deep Volatile Cycling in the Generation of Intracontinental Highâ€Mg Andesites: Implication for Lithospheric Thinning Beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 2019, 124, 1305-1323.	3.4	16
39	Ten years of research progress on the structure, <i>P–T</i> path and Fluid–Melt evolution of the deeplyâ€subducted UHP continental crust in the Sulu belt. Acta Geologica Sinica, 2019, 93, 122-123.	1.4	0
40	Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton. Lithos, 2019, 342-343, 513-529.	1.4	44
41	Geochemistry of middle-late Mesozoic mafic intrusions in the eastern North China Craton: New insights on lithospheric thinning and decratonization. Gondwana Research, 2019, 73, 153-174.	6.0	21
42	Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis. Bulletin of the Geological Society of America, 2019, 131, 1031-1056.	3.3	38
43	The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere. Earth-Science Reviews, 2019, 190, 557-569.	9.1	26
44	No plate tectonic shutdown in the early Paleoproterozoic: Constraints from the ca. 2.4†Ga granitoids in the Quanji Massif, NW China. Journal of Asian Earth Sciences, 2019, 172, 221-242.	2.3	21
45	Magmatic record of Neoarchean arc-polarity reversal from the Dengfeng segment of the Central Orogenic Belt, North China Craton. Precambrian Research, 2019, 326, 105-123.	2.7	32
46	Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science (Wuhan, China), 2018, 29, 93-102.	3.2	17
47	On the Role of Lower Crust and Midlithosphere Discontinuity for Cratonic Lithosphere Delamination and Recycling. Geophysical Research Letters, 2018, 45, 7425-7433.	4.0	26
48	A ca.2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Research, 2018, 309, 309-324.	2.7	54
49	Paleoproterozoic assembly of the North and South Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores. Precambrian Research, 2018, 305, 151-165.	2.7	52
50	Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction. Tectonophysics, 2018, 723, 95-106.	2.2	17
51	Sedimentary provenance in response to Carboniferous arc-basin evolution of East Junggar and North Tianshan belts in the southwestern Central Asian Orogenic Belt. Tectonophysics, 2018, 722, 324-341.	2.2	45
52	Comments on "Paleoproterozoic arc-continent collision in the North China Craton: Evidence from the Zanhuang Complex―by Li et al. (2016), Precambrian Research 286: 281–305. Precambrian Research, 2018, 304, 171-173.	2.7	1
53	Zircon and Monazite Ages Constraints on Devonian Magmatism and Granulite-Facies Metamorphism in the Southern Qaidam Block: Implications for Evolution of Proto- and Paleo-Tethys in East Asia. Journal of Earth Science (Wuhan, China), 2018, 29, 1132-1150.	3.2	14
54	Geological Evidence for the Operation of Plate Tectonics throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science (Wuhan, China), 2018, 29, 1291-1303.	3.2	105

#	Article	IF	CITATIONS
55	Origin and tectonic implications of an Early Paleozoic (460–440â€ ⁻ Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 2018, 322, 104-128.	1.4	33
56	A Middle Permian Ophiolitic Mélange Belt in the Solonker Suture Zone, Western Inner Mongolia, China: Implications for the Evolution of the Paleoâ€Asian Ocean. Tectonics, 2018, 37, 1292-1320.	2.8	39
57	Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula, eastern Al Hajar Mountains, Oman. Quaternary Research, 2018, 90, 418-434.	1.7	30
58	On the role of incompetent strata in the structural evolution of the Zagros Fold-Thrust Belt, Dezful Embayment, Iran. Marine and Petroleum Geology, 2017, 81, 320-333.	3.3	40
59	A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 2017, 293, 13-38.	2.7	74
60	Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 2017, 295, 24-37.	2.7	61
61	Comments to "Paleoproterozoic meta-carbonates from the Central segment of the Trans-North China Orogen: Zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes―by Tang et al., 2016, Precambrian Research 284: 14–29. Precambrian Research, 2017, 294, 344-349.	2.7	11
62	Tectonic mélange records the Silurian–Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt. Geology, 2017, 45, 427-430.	4.4	68
63	Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for evolving tectonic settings. Precambrian Research, 2017, 289, 75-94.	2.7	62
64	Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 2017, 4, 111-120.	9.5	240
65	Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography. Earth and Planetary Science Letters, 2017, 460, 244-254.	4.4	44
66	Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Midâ€Lithosphere Discontinuity: A Hypothesis. Geophysical Research Letters, 2017, 44, 9253-9260.	4.0	15
67	High-Cr chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China: Implications for its tectonic environment of formation. Lithos, 2017, 288-289, 35-54.	1.4	15
68	Petrogenesis and geochemistry of circa 2.5 Ga granitoids in the Zanhuang Massif: Implications for magmatic source and Neoarchean metamorphism of the North China Craton. Lithos, 2017, 268-271, 149-162.	1.4	34
69	Structural relationships along a Neoarchean arc-continent collision zone, North China craton. Bulletin of the Geological Society of America, 2017, 129, 59-75.	3.3	45
70	Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Canadian Journal of Earth Sciences, 2016, 53. 1336-1371.	1.3	38
71	A Paleoproterozoic (Orosirian) Ophiolitic Mélange, North Yangzte Craton. Acta Geologica Sinica, 2016, 90, 215-216.	1.4	7
72	Tertiary and quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. Journal of Earth Science (Wuhan, China), 2016, 27, 955-970.	3.2	16

ТІМОТНҮ М Kusky

#	Article	IF	CITATIONS
73	Geomorphometric evidence of an active pop-up structure along the sabzpushan fault zone, Zagros mountains, SW Iran. Journal of Earth Science (Wuhan, China), 2016, 27, 945-954.	3.2	11
74	Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone. Tectonophysics, 2016, 671, 56-62.	2.2	32
75	Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze craton, China: Implications for geodynamic events. Precambrian Research, 2016, 279, 37-56.	2.7	30
76	Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Science Reviews, 2016, 162, 387-432.	9.1	282
77	Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin, 2016, 61, 1669-1671.	9.0	4
78	A Neoarchean Subduction Polarity Reversal Event in the North China Craton: Evidence from 2.5 Ga Mafic Dikes and Coeval Granites. Acta Geologica Sinica, 2016, 90, 200-200.	1.4	0
79	A Sheeted Dike Complex in the Protrozoic Miaowan Ophiolite Complex on the Northern Yangtze Craton: Recording Seafloor Spreading. Acta Geologica Sinica, 2016, 90, 201-201.	1.4	4
80	Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophysical Research Letters, 2016, 43, 11,567.	4.0	30
81	Review of Lithospheric Destruction in the North China, North Atlantic, and Tanzanian Cratons. Journal of Geology, 2016, 124, 699-721.	1.4	9
82	Geochemistry, Nd, Pb and Sr isotope systematics, and U–Pb zircon ages of the Neoarchean Bad Vermilion Lake greenstone belt and spatially associated granitic rocks, western Superior Province, Canada. Precambrian Research, 2016, 282, 21-51.	2.7	20
83	A 2.5 Ga fore-arc subduction-accretion complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 2016, 275, 241-264.	2.7	65
84	Dynamic cause of marginal lithospheric thinning and implications for craton destruction: a comparison of the North China, Superior, and Yilgarn cratons. Canadian Journal of Earth Sciences, 2016, 53, 1121-1141.	1.3	16
85	Occurrence of gold in hydrothermal pyrite, western Taupo Volcanic Zone, New Zealand. Geodinamica Acta, 2016, 28, 185-198.	2.2	13
86	Geochronology and geochemistry of late Carboniferous volcanic rocks from northern Inner Mongolia, North China: Petrogenesis and tectonic implications. Gondwana Research, 2016, 36, 545-560.	6.0	52
87	Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 2016, 32, 105-121.	6.0	95
88	Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic–ultramafic rocks from the western Jiangnan orogen, South China. Gondwana Research, 2016, 35, 338-356.	6.0	50
89	A Neoarchean subduction polarity reversal event in the North China Craton. Lithos, 2015, 220-223, 133-146.	1.4	53
90	Is the Ordos Basin floored by a trapped oceanic plateau?. Earth and Planetary Science Letters, 2015, 429, 197-204.	4.4	39

#	Article	IF	CITATIONS
91	Cenozoic evolution of the Tan–Lu Fault Zone (East China)—Constraints from seismic data. Gondwana Research, 2015, 28, 1079-1095.	6.0	78
92	Continental flood basalts derived from the hydrous mantle transition zone. Nature Communications, 2015, 6, 7700.	12.8	112
93	Pyroxenite-derived Early Cretaceous lavas in the Liaodong Peninsula: Implication for metasomatism and thinning of the lithospheric mantle beneath North China Craton. Lithos, 2015, 227, 77-93.	1.4	30
94	Has the Yangtze craton lost its root? A comparison between the North China and Yangtze cratons. Tectonophysics, 2015, 655, 1-14.	2.2	55
95	GIS-Based analysis of relative tectonic activity along the kazerun fault zone, zagros mountains, iran: insights from data mining of Geomorphic Data. Journal of Earth Science (Wuhan, China), 2015, 26, 712-723.	3.2	12
96	Evolution of high-pressure mafic granulites and pelitic gneisses from NE Madagascar: Tectonic implications. Tectonophysics, 2015, 662, 219-242.	2.2	14
97	Zircon U–Pb ages, major and trace elements, and Hf isotope characteristics of the Tiantangzhai granites in the North Dabie orogen, Central China: tectonic implications. Geological Magazine, 2014, 151, 916-937.	1.5	10
98	Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, 2014, 5, 5604.	12.8	132
99	Are Wilson Cycles preserved in Archean cratons? A comparison of the North China and Slave cratons. Canadian Journal of Earth Sciences, 2014, 51, 297-311.	1.3	24
100	Geochronology of the Baye Mn oxide deposit, southern Yunnan Plateau: Implications for the late Miocene to Pleistocene paleoclimatic conditions and topographic evolution. Geochimica Et Cosmochimica Acta, 2014, 139, 227-247.	3.9	18
101	Remote sensing based approach for mapping of CO2 sequestered regions in Samail ophiolite massifs of the Sultanate of Oman. Earth-Science Reviews, 2014, 135, 122-140.	9.1	19
102	Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 2014, 205, 359-378.	1.4	73
103	Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 2014, 254, 59-72.	2.7	59
104	Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 2014, 630, 208-221.	2.2	199
105	Zircon Hf isotope of Yingfeng Rapakivi granites from the Quanji Massif and â^1⁄42.7 Ga crustal growth. Journal of Earth Science (Wuhan, China), 2013, 24, 29-41.	3.2	29
106	An integrated approach for groundwater potential zoning in shallow fracture zone aquifers. International Journal of Remote Sensing, 2013, 34, 6539-6561.	2.9	20
107	A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 2013, 608, 929-946.	2.2	91
108	Geochemistry of Neoarchean mafic volcanic rocks and late mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for geodynamic setting. Lithos, 2013, 175-176, 193-212.	1.4	64

ТІМОТНҮ М Kusky

#	Article	IF	CITATIONS
109	Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geology Reviews, 2013, 53, 470-488.	2.7	68
110	Geometry and kinematics of the late Proterozoic Angavo Shear Zone, Central Madagascar: Implications for Gondwana Assembly. Tectonophysics, 2013, 592, 113-129.	2.2	8
111	Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Research, 2013, 24, 501-547.	6.0	273
112	Continental flood basalts of the Huashan Group, northern margin of the Yangtze block – implications for the breakup of Rodinia. International Geology Review, 2013, 55, 1865-1884.	2.1	26
113	Volcanosedimentary Basins in the Arabian-Nubian Shield: Markers of Repeated Exhumation and Denudation in a Neoproterozoic Accretionary Orogen. Geosciences (Switzerland), 2013, 3, 389-445.	2.2	76
114	Kinematic analysis of deformed structures in a tectonic mélange: a key unit for the manifestation of transpression along the Zagros Suture Zone, Iran. Geological Magazine, 2012, 149, 1107-1117.	1.5	14
115	Triassic shoshonitic dykes from the northern North China craton: petrogenesis and geodynamic significance. Geological Magazine, 2012, 149, 39-55.	1.5	20
116	Mapping of planation surfaces in the southwest region of Hubei Province, China—Using the DEM-derived painted relief model. Journal of Earth Science (Wuhan, China), 2012, 23, 719-730.	3.2	7
117	Kinematic and thermochronological constraints on the Xincheng–Huangpi fault and Mesozoic two-phase extrusion of the Tongbai–Dabie Orogen Belt. Journal of Asian Earth Sciences, 2012, 60, 160-173.	2.3	11
118	Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation. Tectonophysics, 2012, 564-565, 83-100.	2.2	36
119	U–Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history. Journal of Asian Earth Sciences, 2012, 54-55, 110-130.	2.3	92
120	Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 2012, 22, 828-842.	6.0	103
121	Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 2012, 222-223, 143-158.	2.7	128
122	Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 2012, 220-221, 158-176.	2.7	64
123	Post-kinematic lithospheric delamination of the Wuyi–Yunkai orogen in South China: Evidence from ca. 435Ma high-Mg basalts. Lithos, 2012, 154, 115-129.	1.4	126
124	Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 2012, 155, 49-66.	1.4	58
125	Cryogenian ophiolite tectonics and metallogeny of the Central Eastern Desert of Egypt. International Geology Review, 2012, 54, 1870-1884.	2.1	53
126	New research progress on the pre-Sinian tectonic evolution and neotectonics of the Huangling anticline region, South China. Journal of Earth Science (Wuhan, China), 2012, 23, 639-647.	3.2	8

#	Article	IF	CITATIONS
127	Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline. Journal of Earth Science (Wuhan, China), 2012, 23, 648-658.	3.2	23
128	Discovery of a sheeted dike complex in the northern Yangtze craton and its implications for craton evolution. Journal of Earth Science (Wuhan, China), 2012, 23, 676-695.	3.2	12
129	Sea-floor metamorphism recorded in epidosites from the ca. 1.0 Ga Miaowan ophiolite, Huangling anticline, China. Journal of Earth Science (Wuhan, China), 2012, 23, 696-704.	3.2	15
130	Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications. Journal of Earth Science (Wuhan, China), 2012, 23, 705-718.	3.2	8
131	On the role of dual active margin collision for exhuming the world's largest ultrahigh pressure metamorphic belt. Journal of Earth Science (Wuhan, China), 2012, 23, 802-812.	3.2	3
132	The neoarchean ophiolite in the North China craton: Early precambrian plate tectonics and scientific debate. Journal of Earth Science (Wuhan, China), 2012, 23, 277-284.	3.2	39
133	Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research, 2012, 21, 577-594.	6.0	138
134	Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai–Tibet Plateau and its tectonic significance: LA-ICPMS U–Pb zircon geochronology and geochemistry. Gondwana Research, 2012, 21, 152-166.	6.0	92
135	Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U–Pb dating and Hf–O isotopes. Gondwana Research, 2012, 21, 838-864.	6.0	161
136	Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 2012, 49, 121-134.	2.6	114
137	The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton: Crustal contamination of basaltic magma in an intracontinental extensional environment. Lithos, 2012, 134-135, 273-288.	1.4	34
138	Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 2012, 140-141, 66-85.	1.4	30
139	ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 2012, 44, 121-135.	2.7	96
140	Geomorphologic assessment of relative tectonic activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geological Journal, 2012, 47, 30-40.	1.3	29
141	Usage of strain and vorticity analyses to interpret largeâ€scale fold mechanisms along the Sanandaj–Sirjan HP‣T metamorphic belt, SW Iran. Geological Journal, 2012, 47, 99-110.	1.3	11
142	A critical examination of evidence for a Quaternary glaciation in Mt. Laoshan, Eastern China. Journal of Asian Earth Sciences, 2011, 40, 403-416.	2.3	10
143	LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate. Journal of Asian Earth Sciences, 2011, 42, 286-305.	2.3	59
144	Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research, 2011, 191, 101-119.	2.7	120

#	Article	IF	CITATIONS
145	Sub-canopy Soil Moisture Modeling in n-Dimensional Spectral Feature Space. Photogrammetric Engineering and Remote Sensing, 2011, 77, 149-156.	0.6	16
146	Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie–Sulu orogen, east-central China. Tectonophysics, 2011, 504, 25-42.	2.2	115
147	A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic–ultramafic intrusions in the Emeishan Large Igneous Province, SW China. Ore Geology Reviews, 2011, 41, 133-143.	2.7	63
148	Gushan magnetite–apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type?. Ore Geology Reviews, 2011, 43, 333-346.	2.7	52
149	P–T and structural constraints of lawsonite and epidote blueschists from Liberty Creek and Seldovia: Tectonic implications for early stages of subduction along the southern Alaska convergent margin. Lithos, 2011, 121, 100-116.	1.4	16
150	Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 2011, 61, 167-232.	2.0	566
151	Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 2011, 20, 26-35.	6.0	335
152	Structural and tectonic evolution of El-Faiyum depression, North Western Desert, Egypt based on analysis of Landsat ETM+, and SRTM Data. Journal of Earth Science (Wuhan, China), 2011, 22, 75-100.	3.2	18
153	Comparison of results of recent seismic profiles with tectonic models of the North China craton. Journal of Earth Science (Wuhan, China), 2011, 22, 250-259.	3.2	35
154	Lithospheric structure in the North China craton constrained from Gravity Field Model (EGM 2008). Journal of Earth Science (Wuhan, China), 2011, 22, 260-272.	3.2	9
155	Application of the modern ophiolite concept with special reference to Precambrian ophiolites. Science China Earth Sciences, 2011, 54, 315-341.	5.2	53
156	Supercontinent cycles, extreme metamorphic processes, and changing fluid regimes. International Geology Review, 2011, 53, 1403-1423.	2.1	23
157	Environmental monitoring of bombetoka bay and the Betsiboka estuary, Madagascar, using multi-temporal satellite data. Journal of Earth Science (Wuhan, China), 2010, 21, 210-226.	3.2	24
158	Origin and emplacement of Archean ophiolites of the central orogenic belt, North China craton. Journal of Earth Science (Wuhan, China), 2010, 21, 744-781.	3.2	37
159	Focusing seismic energy along faults through time-variable rupture modes: Wenchuan earthquake, China. Journal of Earth Science (Wuhan, China), 2010, 21, 910-922.	3.2	11
160	Structural geometry of an exhumed UHP terrane in the eastern Sulu Orogen, China: Implications for continental collisional processes. Journal of Structural Geology, 2010, 32, 423-444.	2.3	32
161	Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 2010, 38, 59-69.	2.7	267
162	Petrogenesis and tectonic significance of the â^¼850ÂMa Gangbian alkaline complex in South China: Evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos, 2010, 114. 1-15.	1.4	437

#	Article	IF	CITATIONS
163	Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 2010, 120, 490-510.	1.4	85
164	Active tectonics of the Alaotra–Ankay Graben System, Madagascar: Possible extension of Somalian–African diffusive plate boundary?. Gondwana Research, 2010, 18, 274-294.	6.0	60
165	Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, 2010, 56, 75-82.	2.0	206
166	Microfabric characteristics and rheological significance of ultraâ€highâ€pressure metamorphosed jadeiteâ€quartzite and eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 2010, 28, 163-182.	3.4	28
167	Origin of paired high pressure–ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova, 2010, 22, 35-42.	2.1	208
168	The evolving continents: understanding processes of continental growth – introduction. Geological Society Special Publication, 2010, 338, 1-6.	1.3	5
169	Two-stage Triassic exhumation of HP–UHP terranes in the western Dabie orogen of China: Constraints from structural geology. Tectonophysics, 2010, 490, 267-293.	2.2	102
170	Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. Journal of Geodynamics, 2010, 49, 39-53.	1.6	158
171	Temporal evolution of the Angavo and related shear zones in Gondwana: Constraints from LA-MC-ICP-MS U–Pb zircon ages of granitoids and gneiss from central Madagascar. Precambrian Research, 2010, 182, 30-42.	2.7	27
172	Heterogeneous ductile deformation and quartz c-axis fabric development within the HP-LT Sanandaj-Sirjan Metamorphic Belt, Iran. Tectonophysics, 2010, 485, 283-289.	2.2	16
173	Geological evolution of Longhushan World Geopark in relation to global tectonics. Journal of Earth Science (Wuhan, China), 2010, 21, 1-18.	3.2	24
174	Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Research, 2009, 15, 14-27.	6.0	69
175	Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review. Gondwana Research, 2009, 15, 381-395.	6.0	138
176	Two-stage collision-related extrusion of the western Dabie HP–UHP metamorphic terranes, central China: Evidence from quartz c-axis fabrics and structures. Gondwana Research, 2009, 16, 294-309.	6.0	74
177	Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr–Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 2009, 16, 201-215.	6.0	147
178	The Columbia connection in North China. Geological Society Special Publication, 2009, 323, 49-71.	1.3	91
179	Accretionary orogens through Earth history. Geological Society Special Publication, 2009, 318, 1-36.	1.3	719
180	Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 2008, 105, 379-395.	1.4	73

Тімотну М Кизку

#	Article	IF	CITATIONS
181	Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis. Journal of Asian Earth Sciences, 2008, 31, 379-403.	2.3	44
182	Note on the paper by Guochun Zhao, Simon A. Wilde, Sanzhong Li, Min Sun, Matthew L. Grant and Xuping Li, 2007, "U–Pb zircon age constraints on the Dongwanzi ultramafic–mafic body, North China, confirm it is not an Archean ophiolite― Earth and Planetary Science Letters, 2008, 273, 227-230.	4.4	8
183	A reâ€examination of perpendicular drought indices. International Journal of Remote Sensing, 2008, 29, 6037-6044.	2.9	30
184	Geochronology and Geochemistry of the Kuwei Mafic Intrusion, Southern Margin of the Altai Mountains, Northern Xinjiang, Northwest China: Evidence for Distant Effects of the Indoâ€Eurasia Collision. Journal of Geology, 2008, 116, 119-133.	1.4	4
185	Successor Characteristics of the Mesozoic and Cenozoic Songliao Basins. Acta Geologica Sinica, 2008, 82, 622-628.	1.4	2
186	The Late Permian to Triassic Hongseong-Odesan Collision Belt in South Korea, and Its Tectonic Correlation with China and Japan. International Geology Review, 2007, 49, 636-657.	2.1	137
187	Structure, Cr-chemistry, and age of the Border Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex. , 2007, , 207-225.		13
188	Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate. Geological Society Special Publication, 2007, 280, 171-188.	1.3	24
189	Lithospheric thinning in eastern Asia; constraints, evolution, and tests of models. Geological Society Special Publication, 2007, 280, 331-343.	1.3	35
190	Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth: Reply. Bulletin of the Geological Society of America, 2007, 119, 490-492.	3.3	13
191	Role of fluvial and structural processes in the formation of the Wahiba Sands, Oman: A remote sensing perspective. Journal of Arid Environments, 2007, 69, 676-694.	2.4	19
192	Tectonic evolution of the North China Block: from orogen to craton to orogen. Geological Society Special Publication, 2007, 280, 1-34.	1.3	223
193	Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500 °C mantle melts by a Rodinian mantle plume. Geology, 2007, 35, 1103.	4.4	165
194	ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 2007, 11, 326-335.	6.0	189
195	Komatiites from west Shandong, North China craton: Implications for plume tectonics. Gondwana Research, 2007, 12, 77-83.	6.0	59
196	A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. Gondwana Research, 2007, 12, 47-66.	6.0	135
197	Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78ÂGa mafic dykes in the central North China craton. Gondwana Research, 2007, 12, 29-46.	6.0	176
198	Chondritic osmium isotopic composition of Archean ophiolitic mantle, North China craton. Gondwana Research, 2007, 12, 67-76.	6.0	20

Тімотну М Кизку

#	Article	IF	CITATIONS
199	World's largest known Precambrian fossil black smoker chimneys and associated microbial vent communities, North China: Implications for early life. Gondwana Research, 2007, 12, 84-100.	6.0	22
200	The Great Rift Valley of Madagascar: An extension of the Africa–Somali diffusive plate boundary?. Gondwana Research, 2007, 11, 577-579.	6.0	24
201	Tectonic evolution of China and adjacent crustal fragments. Gondwana Research, 2007, 12, 1-3.	6.0	18
202	Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Research, 2007, 12, 121-143.	6.0	238
203	The Paleoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia supercontinent. Gondwana Research, 2007, 12, 4-28.	6.0	410
204	Neoproterozoic nappes and superposed folding of the Itremo Group, west-central Madagascar. Gondwana Research, 2007, 12, 356-379.	6.0	64
205	The Nubian Aquifer in Southwest Egypt. Hydrogeology Journal, 2007, 15, 33-45.	2.1	42
206	Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca. 2.5 Ga) peridotites, central orogenic belt, North China craton. Bulletin of the Geological Society of America, 2006, 118, 771-784.	3.3	163
207	Geochemical characteristics of the Neoarchean (2800–2700 Ma) Taishan greenstone belt, North China Craton: Evidence for plume–craton interaction. Chemical Geology, 2006, 230, 60-87.	3.3	161
208	Monthly variations of water masses in the East China Seas. Continental Shelf Research, 2006, 26, 1954-1970.	1.8	61
209	Disappearing Lake Alaotra: Monitoring catastrophic erosion, waterway silting, and land degradation hazards in Madagascar using Landsat imagery. Journal of African Earth Sciences, 2006, 44, 241-252.	2.0	98
210	Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 2006, 44, 196-202.	2.0	143
211	Structural and remote sensing studies of the southern Betsimisaraka Suture, Madagascar. Gondwana Research, 2006, 10, 186-197.	6.0	65
212	Discovery of deep - level foreland thrust - fold structures in Taihang Mt. and its implication for early tectonic evolution of North China. Progress in Natural Science: Materials International, 2005, 15, 229-238.	4.4	1
213	Tertiary–Quaternary faulting and uplift in the northern Oman Hajar Mountains. Journal of the Geological Society, 2005, 162, 871-888.	2.1	82
214	Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth. Bulletin of the Geological Society of America, 2005, 117, 1387.	3.3	250
215	The Resurrection Peninsula Ophiolite, Mélange and Accreted Flysch Belts of Southern Alaska as an Analog for Trench-Forearc Systems in Precambrian Orogens. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2004, 13, 627-674.	0.2	13
216	Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2004, 13, 223-274.	0.2	36

Тімотну М Кизку

#	Article	IF	CITATIONS
217	Epilogue: What if Anything Have We Learned About Precambrian Ophiolites and Early Earth Processes?. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2004, , 727-737.	0.2	9
218	Late Paleozoic orogeny in Alaska's Farewell terrane. Tectonophysics, 2003, 372, 23-40.	2.2	31
219	Structural and tectonic evolution of the Neoproterozoic Feiran–Solaf metamorphic belt, Sinai Peninsula: implications for the closure of the Mozambique Ocean. Precambrian Research, 2003, 123, 269-293.	2.7	61
220	Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22, 383-397.	2.3	780
221	Neoproterozoic dextral faulting on the Najd Fault System, Saudi Arabia, preceded sinistral faulting and escape tectonics related to closure of the Mozambique Ocean. Geological Society Special Publication, 2003, 206, 327-361.	1.3	49
222	Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution. , 2003, , .		23
223	Early continental breakup boundary and migration of the Afar triple junction, Ethiopia. Bulletin of the Geological Society of America, 2003, 115, 1053.	3.3	83
224	Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. Journal of African Earth Sciences, 2002, 35, 107-121.	2.0	166
225	Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 2002, 12, 4.	2.0	129
226	Structural and U/Pb chronology of superimposed folds, Adirondack Mountains: implications for the tectonic evolution of the Grenville Province. Journal of Geodynamics, 2001, 32, 395-418.	1.6	8
227	Analysis of Landsat TM Ratio Imagery of the Halaban Zarghat Fault and Related Jifn Basin, NE Arabian Shield: Implications for the Kinematic History of the Najd Fault System. Gondwana Research, 2001, 4, 182-182.	6.0	14
228	The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 2001, 292, 1142-1145.	12.6	289
229	Geochemistry of near-trench intrusives associated with ridge subduction, Seldovia Quadrangle, southern Alaska. Journal of Geophysical Research, 2000, 105, 27957-27978.	3.3	35
230	Window on the Early Earth. Science, 2000, 288, 1590-1590.	12.6	0
231	Kinematic analysis of mélange fabrics: examples and applications from the McHugh Complex, Kenai Peninsula, Alaska. Journal of Structural Geology, 1999, 21, 1773-1796.	2.3	118
232	Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada. Canadian Journal of Earth Sciences, 1999, 36, 565-584.	1.3	36
233	Growth of granite–greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics, 1999, 305, 43-73.	2.2	218
234	Emplacement of the Resurrection Peninsula ophiolite in the southern Alaska forearc during a ridge-trench encounter. Journal of Geophysical Research, 1999, 104, 29025-29054.	3.3	52

#	Article	IF	CITATIONS
235	Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology, 1998, 26, 163.	4.4	113
236	Age and origin of the Boil Mountain ophiolite and Chain Lakes massif, Maine: implications for the Penobscottian orogeny. Canadian Journal of Earth Sciences, 1997, 34, 646-654.	1.3	17
237	Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska. Tectonics, 1997, 16, 855-878.	2.8	105
238	Arc-like mid-ocean ridge basalt formed seaward of a trench-forearc system just prior to ridge subduction: An example from subaccreted ophiolites in southern Alaska. Journal of Geophysical Research, 1997, 102, 10225-10243.	3.3	43
239	Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter. Journal of Structural Geology, 1997, 19, 139-157.	2.3	75
240	Tectonic implications of early silurian thrust imbrication of the northern exploits subzone, Central Newfoundland. Journal of Geodynamics, 1996, 22, 229-265.	1.6	7
241	Elastic Wave Propagation In A Medium Containing Oriented Inclusions With A Changing Aspect Ratio: A Physical Model Study. Geophysical Journal International, 1996, 125, 163-172.	2.4	20
242	Structural relationships along a greenstone/shallow water shelf contact, Belingwe greenstone belt, Zimbabwe. Tectonics, 1995, 14, 448-471.	2.8	48
243	Ensialic origin for the Ngezi Group, Belingwe greenstone belt, Zimbabwe: Comment and Reply. Geology, 1994, 22, 766.	4.4	6
244	A PHYSICAL MODEL STUDY OF SCATTERING OF WAVES BY ALIGNED CRACKS: COMPARISON BETWEEN EXPERIMENT AND THEORY1. Geophysical Prospecting, 1993, 41, 323-339.	1.9	25
245	Collapse of Archean orogens and the generation of late- to postkinematic granitoids. Geology, 1993, 21, 925.	4.4	77
246	Analysis of Seasat L-Band Radar Imagery of the West Bay-Indin Lake Fault System, Northwest Territories. Journal of Geology, 1993, 101, 623-632.	1.4	7
247	Remnants of an Archean oceanic plateau, Belingwe greenstone belt, Zimbabwe. Geology, 1992, 20, 43.	4.4	145
248	Structural development of an Archean Orogen, Western Point Lake, Northwest Territories. Tectonics, 1991, 10, 820-841.	2.8	51
249	Deformed sedimentary fabrics in metamorphic rocks: Evidence from the Point Lake area, Slave province, Northwest Territories. Bulletin of the Geological Society of America, 1991, 103, 486-503.	3.3	12
250	Plate Reconstructions Using Stromatolite Heliotropism: Principles and Applications. Journal of Geology, 1991, 99, 321-335.	1.4	10
251	Structural development of angular volcanic belts in the Archean Slave Province: Discussion. Canadian Journal of Earth Sciences, 1990, 27, 1783-1785.	1.3	1
252	Evidence for Archean ocean opening and closing in the Southern Slave Province. Tectonics, 1990, 9, 1533-1563.	2.8	91

0

#	Article	IF	CITATIONS
253	Accretion of the Archean Slave province. Geology, 1989, 17, 63.	4.4	164
254	Comment and Reply on "Accretion of the Archean Slave province". Geology, 1989, 17, 963.	4.4	4
255	Strain analysis in rocks with pretectonic fabrics: Discussion. Journal of Structural Geology, 1988, 10, 529-530.	2.3	6
256	Displacement history of the Northern Arm Fault, and its bearing on the Post-Taconic evolution of north-central Newfoundland. Journal of Geodynamics, 1987, 7, 105-133.	1.6	25
257	Comment and Reply on "Multiple dikes in the Lower Kam Group, Yellowknife greenstone belt: Evidence for Archean sea-floor spreading?― Geology, 1987, 15, 280.	4.4	8
258	Archean Foreland Basin tectonics in the Witwatersrand, South Africa. Tectonics, 1986, 5, 439-456.	2.8	109
259	Geologic Evidence for Rate of Plate Convergence during the Taconic Arc-Continent Collision. Journal of Geology, 1986, 94, 667-681.	1.4	69
260	The Pongola structure of southeastern Africa: The world's oldest preserved rift?. Journal of Geodynamics, 1985, 2, 35-49.	1.6	46
261	Is the Ventersdorp Rift System of Southern Africa related to a continental collision between the Kaapvaal and Zimbabwe Cratons at 2.64 Ga ago?. Tectonophysics, 1985, 115, 1-24.	2.2	72

A Brief History of Flooding and Flood Control Measures Along the Mississippi River Basin. , 0, , 31-41.