Merlin Bruening

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575548/publications.pdf

Version: 2024-02-01

		19636	30058
154	11,454	61	103
papers	citations	h-index	g-index
158	158	158	9126
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thioaromatic monolayers on gold: a new family of self-assembling monolayers. Langmuir, 1993, 9, 2974-2981.	1.6	436
2	Catalytic Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolyte/Metal Nanoparticle Films in Porous Supports. Nano Letters, 2006, 6, 2268-2272.	4.5	365
3	Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films. Nano Letters, 2002, 2, 497-501.	4.5	342
4	Synthesis of Passivating, Nylon-Like Coatings through Cross-Linking of Ultrathin Polyelectrolyte Films. Journal of the American Chemical Society, 1999, 121, 1978-1979.	6.6	308
5	Electrochemical and in Situ Ellipsometric Investigation of the Permeability and Stability of Layered Polyelectrolyte Films. Langmuir, 2000, 16, 2006-2013.	1.6	297
6	Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers. Journal of the American Chemical Society, 2004, 126, 2658-2659.	6.6	286
7	Functionalization of Surfaces by Water-Accelerated Atom-Transfer Radical Polymerization of Hydroxyethyl Methacrylate and Subsequent Derivatization. Macromolecules, 2002, 35, 1175-1179.	2.2	281
8	Surface-Initiated Atom Transfer Radical Polymerization on Gold at Ambient Temperature. Journal of the American Chemical Society, 2000, 122, 7616-7617.	6.6	277
9	Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. Journal of Membrane Science, 2008, 310, 76-84.	4.1	267
10	Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. Journal of Membrane Science, 2008, 325, 58-68.	4.1	262
11	Ultrathin, Multilayered Polyelectrolyte Films as Nanofiltration Membranes. Langmuir, 2003, 19, 7038-7042.	1.6	246
12	Creation of Functional Membranes Using Polyelectrolyte Multilayers and Polymer Brushes. Langmuir, 2008, 24, 7663-7673.	1.6	229
13	Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport. Chemistry of Materials, 2000, 12, 1941-1946.	3.2	194
14	High-Flux Nanofiltration Membranes Prepared by Adsorption of Multilayer Polyelectrolyte Membranes on Polymeric Supports. Langmuir, 2005, 21, 10587-10592.	1.6	188
15	Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrometry Reviews, 2010, 29, 29-54.	2.8	168
16	Correlation of the Swelling and Permeability of Polyelectrolyte Multilayer Films. Chemistry of Materials, 2005, 17, 5375-5381.	3.2	167
17	Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles:  Synthesis, Characterization, and Application in Selective Hydrogenation. Chemistry of Materials, 2005, 17, 301-307.	3.2	166
18	Size-Selective Transport of Uncharged Solutes through Multilayer Polyelectrolyte Membranes. Chemistry of Materials, 2004, 16, 351-357.	3.2	163

#	Article	IF	CITATIONS
19	High-Capacity Binding of Proteins by Poly(Acrylic Acid) Brushes and Their Derivatives. Langmuir, 2006, 22, 4274-4281.	1.6	154
20	Coating of Nafion Membranes with Polyelectrolyte Multilayers to Achieve High Monovalent/Divalent Cation Electrodialysis Selectivities. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6620-6628.	4.0	154
21	Nanoparticle-Containing Membranes for the Catalytic Reduction of Nitroaromatic Compounds. Langmuir, 2009, 25, 1865-1871.	1.6	142
22	Preparation of Hyperbranched Polymer Films Grafted on Self-Assembled Monolayers. Journal of the American Chemical Society, 1996, 118, 3773-3774.	6.6	140
23	Synthesis and Characterization of Surface-Grafted, Hyperbranched Polymer Films Containing Fluorescent, Hydrophobic, Ion-Binding, Biocompatible, and Electroactive Groups. Langmuir, 1997, 13, 770-778.	1.6	138
24	Controlling the Permeability of Multilayered Polyelectrolyte Films through Derivatization, Cross-Linking, and Hydrolysis. Langmuir, 2001, 17, 931-937.	1.6	131
25	Kinetics of surface-initiated atom transfer radical polymerization. Journal of Polymer Science Part A, 2003, 41, 386-394.	2.5	131
26	High-Capacity, Protein-Binding Membranes Based on Polymer Brushes Grown in Porous Substrates. Chemistry of Materials, 2006, 18, 4033-4039.	3.2	123
27	Use of Porous Membranes Modified with Polyelectrolyte Multilayers as Substrates for Protein Arrays with Low Nonspecific Adsorption. Analytical Chemistry, 2006, 78, 135-140.	3.2	117
28	Controlling the Nanofiltration Properties of Multilayer Polyelectrolyte Membranes through Variation of Film Composition. Langmuir, 2004, 20, 11545-11551.	1.6	116
29	Polymer Brush-Modified Magnetic Nanoparticles for His-Tagged Protein Purification. Langmuir, 2011, 27, 3106-3112.	1.6	113
30	High-Capacity Purification of His-tagged Proteins by Affinity Membranes Containing Functionalized Polymer Brushes. Biomacromolecules, 2007, 8, 3102-3107.	2.6	108
31	Enhancement of the Ion-Transport Selectivity of Layered Polyelectrolyte Membranes through Cross-Linking and Hybridization. Chemistry of Materials, 2001, 13, 2641-2648.	3.2	102
32	Enhancing the Anion-Transport Selectivity of Multilayer Polyelectrolyte Membranes by Templating with Cu2+. Macromolecules, 2002, 35, 3171-3178.	2.2	101
33	Separation of Fluoride from Other Monovalent Anions Using Multilayer Polyelectrolyte Nanofiltration Membranes. Langmuir, 2007, 23, 1716-1722.	1.6	99
34	Polar Ligand Adsorption Controls Semiconductor Surface Potentials. Journal of the American Chemical Society, 1994, 116, 2972-2977.	6.6	98
35	Synthesis of Triblock Copolymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 5410-5416.	2.2	97
36	Applications of Polymer Brushes in Protein Analysis and Purification. Annual Review of Analytical Chemistry, 2009, 2, 387-408.	2.8	96

3

#	Article	IF	CITATIONS
37	Fundamentals of Selective Ion Transport through Multilayer Polyelectrolyte Membranes. Langmuir, 2013, 29, 1885-1892.	1.6	96
38	Non-specific, on-probe cleanup methods for MALDI-MS samples. Mass Spectrometry Reviews, 2003, 22, 429-440.	2.8	94
39	Multilayer Dendrimer–Polyanhydride Composite Films on Glass, Silicon, and Gold Wafers. Angewandte Chemie International Edition in English, 1997, 36, 2114-2116.	4.4	93
40	Optimization of flux and selectivity in Clâ^'/SO42â^' separations with multilayer polyelectrolyte membranes. Journal of Membrane Science, 2006, 283, 366-372.	4.1	92
41	Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes. Journal of Membrane Science, 2006, 280, 1-5.	4.1	91
42	Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. Journal of Membrane Science, 2009, 327, 2-5.	4.1	90
43	Simultaneous Control of Surface Potential and Wetting of Solids with Chemisorbed Multifunctional Ligands. Journal of the American Chemical Society, 1997, 119, 5720-5728.	6.6	89
44	Controlled Synthesis of Cross-Linked Ultrathin Polymer Films by Using Surface-Initiated Atom Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2001, 40, 1510-1512.	7.2	88
45	Ultrathin, Gas-Selective Polyimide Membranes Prepared from Multilayer Polyelectrolyte Films. Chemistry of Materials, 2003, 15, 281-287.	3.2	87
46	Facile Trypsin Immobilization in Polymeric Membranes for Rapid, Efficient Protein Digestion. Analytical Chemistry, 2010, 82, 10045-10051.	3.2	82
47	Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support. Journal of Membrane Science, 2003, 227, 1-14.	4.1	81
48	Control of the Density of Polymer Brushes Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 5251-5258.	2.2	81
49	Modelling nanofiltration of electrolyte solutions. Advances in Colloid and Interface Science, 2019, 268, 39-63.	7.0	78
50	Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catalysis Today, 2010, 156, 100-106.	2.2	77
51	Selectivity as a Function of Nanoparticle Size in the Catalytic Hydrogenation of Unsaturated Alcohols. Journal of the American Chemical Society, 2009, 131, 3601-3610.	6.6	75
52	Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge. Journal of Membrane Science, 2010, 349, 268-278.	4.1	75
53	Solution-Diffusion–Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. Journal of Membrane Science, 2013, 447, 463-476.	4.1	75
54	Detection of Phosphopeptides Using Fe(III)â^'Nitrilotriacetate Complexes Immobilized on a MALDI Plate. Analytical Chemistry, 2006, 78, 1574-1580.	3.2	74

#	Article	IF	CITATIONS
55	Patterned Monolayer/Polymer Films for Analysis of Dilute or Salt-Contaminated Protein Samples by MALDI-MS. Analytical Chemistry, 2003, 75, 185-190.	3.2	73
56	Variation of Ion-Exchange Capacity, ζ Potential, and Ion-Transport Selectivities with the Number of Layers in a Multilayer Polyelectrolyte Film. Langmuir, 2009, 25, 7478-7485.	1.6	70
57	Removal and separation of metal ions from aqueous solutions using a silica-gel-bonded macrocycle system. Analytical Chemistry, 1988, 60, 1825-1826.	3.2	69
58	Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers. Polymer, 2016, 103, 478-485.	1.8	69
59	Ultrathin, Ion-Selective Polyimide Membranes Prepared from Layered Polyelectrolytes. Journal of the American Chemical Society, 2001, 123, 11805-11806.	6.6	67
60	Surface-Initiated Thermal Radical Polymerization on Gold. Langmuir, 2001, 17, 1731-1736.	1.6	63
61	Phosphopeptide Enrichment Using MALDI Plates Modified with High-Capacity Polymer Brushes. Analytical Chemistry, 2008, 80, 5727-5735.	3.2	63
62	Inhibition of Electrochemical Reactions at Gold Surfaces by Grafted, Highly Fluorinated, Hyperbranched Polymer Films. Langmuir, 1997, 13, 1388-1391.	1.6	62
63	Removal of Dyes, Sugars, and Amino Acids from NaCl Solutions Using Multilayer Polyelectrolyte Nanofiltration Membranes. Industrial & Engineering Chemistry Research, 2006, 45, 6284-6288.	1.8	62
64	Polymer Brush Membranes for Pervaporation of Organic Solvents from Water. Macromolecules, 2005, 38, 2307-2314.	2.2	61
65	Rapid Growth of Polymer Brushes from Immobilized Initiators. Journal of the American Chemical Society, 2006, 128, 9056-9060.	6.6	59
66	Effect of organic solvent and anion type on cation binding constants with silica gel bound macrocycles and their use in designing selective concentrator columns. Analytical Chemistry, 1991, 63, 21-24.	3.2	57
67	Ultrathin, Hyperbranched Poly(acrylic acid) Membranes on Porous Alumina Supports. Journal of the American Chemical Society, 2000, 122, 11670-11678.	6.6	57
68	Protein Purification with Polymeric Affinity Membranes Containing Functionalized Poly(acid) Brushes. Biomacromolecules, 2010, 11, 1019-1026.	2.6	56
69	Spontaneous Generation of Multilamellar Vesicles from Ethylene Oxide/Butylene Oxide Diblock Copolymers. Langmuir, 2002, 18, 5337-5342.	1.6	55
70	Selective Hydrogenation of Monosubstituted Alkenes by Pd Nanoparticles Embedded in Polyelectrolyte Films. Langmuir, 2008, 24, 2916-2920.	1.6	55
71	Ultrathin, Layered Polyamide and Polyimide Coatings on Aluminum. Industrial & Engineering Chemistry Research, 2000, 39, 3528-3535.	1.8	54
72	Crystallization of Polymer Brushes with Poly(ethylene oxide) Side Chains. Macromolecules, 2007, 40, 8212-8219.	2.2	54

#	Article	IF	Citations
73	Polymer-brush stationary phases for open-tubular capillary electrochromatography. Journal of Chromatography A, 2004, 1044, 323-330.	1.8	53
74	Just spray it. Nature Materials, 2009, 8, 449-450.	13.3	53
7 5	Controlling Ion Transport through Multilayer Polyelectrolyte Membranes by Derivatization with Photolabile Functional Groups. Macromolecules, 2002, 35, 3164-3170.	2.2	52
76	pH-Dependent Growth and Morphology of Multilayer Dendrimer/Poly(acrylic acid) Films. Langmuir, 2003, 19, 94-99.	1.6	52
77	Ion-exchange membranes prepared using layer-by-layer polyelectrolyte deposition. Journal of Membrane Science, 2010, 354, 198-205.	4.1	52
78	Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Clâ^'/SO42â^' selectivity. Journal of Membrane Science, 2019, 578, 209-219.	4.1	52
79	Ion separations with membranes. Journal of Polymer Science, 2020, 58, 2831-2856.	2.0	52
80	Modeling diffusion-limited, neutral-macrocycle-mediated cation transport in supported liquid membranes. Analytical Chemistry, 1989, 61, 1140-1148.	3.2	51
81	Solid phase extraction of ions using molecular recognition technology. Pure and Applied Chemistry, 1995, 67, 1069-1074.	0.9	51
82	Synthesis of Hyperbranched, Hydrophilic Fluorinated Surface Grafts. Langmuir, 1996, 12, 5519-5521.	1.6	49
83	Completely Aqueous Procedure for the Growth of Polymer Brushes on Polymeric Substrates. Langmuir, 2007, 23, 11360-11365.	1.6	49
84	Enhancing the Ion-Transport Selectivity of Multilayer Polyelectrolyte Membranes. Chemistry - A European Journal, 2002, 8, 3832-3837.	1.7	48
85	Rapid Synthesis of Functional Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization of an Acidic Monomer. Macromolecules, 2008, 41, 8413-8417.	2.2	47
86	Formation of High-Capacity Protein-Adsorbing Membranes through Simple Adsorption of Poly(acrylic) Tj ETQq0 (0 0 _{1.8} BT /C	verlock 10 Tf
87	Cation separations in electrodialysis through membranes coated with polyelectrolyte multilayers. Polymer, 2014, 55, 1397-1403.	1.8	46
88	Adsorption of polyelectrolyte multilayers imparts high monovalent/divalent cation selectivity to aliphatic polyamide cation-exchange membranes. Journal of Membrane Science, 2017, 537, 177-185.	4.1	45
89	Aqueous Solvation and Functionalization of Weak-Acid Polyelectrolyte Thin Films. Langmuir, 1998, 14, 4232-4237.	1.6	43
90	Separation of Ions Using Polyelectrolyte-Modified Nanoporous Track-Etched Membranes. Langmuir, 2013, 29, 10287-10296.	1.6	41

#	Article	IF	CITATIONS
91	Phosphopeptide Enrichment with TiO ₂ -Modified Membranes and Investigation of Tau Protein Phosphorylation. Analytical Chemistry, 2013, 85, 5699-5706.	3.2	39
92	Quantitation of cation binding by silica gel bound thiamacrocycles and the design of highly selective concentration and purification columns for palladium(II), gold(III), silver(I), and mercury(II). Analytical Chemistry, 1991, 63, 1014-1017.	3.2	38
93	High Selectivities among Monovalent Cations in Dialysis through Cation-Exchange Membranes Coated with Polyelectrolyte Multilayers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44134-44143.	4.0	37
94	Increased Protein Sorption in Poly(acrylic acid)-Containing Films through Incorporation of Comb-Like Polymers and Film Adsorption at Low pH and High Ionic Strength. Langmuir, 2013, 29, 2946-2954.	1.6	36
95	An analytical solution of the solution-diffusion-electromigration equations reproduces trends in ion rejections during nanofiltration of mixed electrolytes. Journal of Membrane Science, 2017, 523, 361-372.	4.1	35
96	Macrocycle-metal cation interactions involving polyaza macrocycles bonded to silica gel via a nitrogen donor atom. Pure and Applied Chemistry, 1990, 62, 1115-1118.	0.9	33
97	An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates. Journal of Membrane Science, 2012, 389, 117-125.	4.1	33
98	Use of Polymer-Modified MALDI-MS Probes To Improve Analyses of Protein Digests and DNA. Analytical Chemistry, 2004, 76, 3106-3111.	3.2	32
99	Phosphopeptide enrichment on functionalized polymer microspots for MALDI-MS analysis. Analyst, The, 2009, 134, 512-518.	1.7	31
100	Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. Journal of Membrane Science, 2014, 459, 169-176.	4.1	30
101	Wet air oxidation with tubular ceramic membranes modified with polyelectrolyte/Pt nanoparticle films. Applied Catalysis B: Environmental, 2009, 91, 180-188.	10.8	29
102	Sacrificial polyelectrolyte multilayer coatings as an approach to membrane fouling control: Disassembly and regeneration mechanisms. Journal of Membrane Science, 2015, 491, 149-158.	4.1	29
103	Pepsin-Containing Membranes for Controlled Monoclonal Antibody Digestion Prior to Mass Spectrometry Analysis. Analytical Chemistry, 2015, 87, 10942-10949.	3.2	29
104	Formation of Ultrathin, Defect-Free Membranes by Grafting of Poly(acrylic acid) onto Layered Polyelectrolyte Films. Langmuir, 2001, 17, 8236-8241.	1.6	28
105	Layer-by-Layer Assembly of Thick, Cu ²⁺ -Chelating Films. Langmuir, 2013, 29, 12720-12729.	1.6	28
106	Limited Proteolysis via Millisecond Digestions in Protease-Modified Membranes. Analytical Chemistry, 2012, 84, 8357-8363.	3.2	27
107	Facile Synthesis of Thick Films of Poly(methyl methacrylate), Poly(styrene), and Poly(vinyl pyridine) from Au Surfaces. ACS Applied Materials & Eamp; Interfaces, 2011, 3, 3042-3048.	4.0	26
108	Flow through negatively charged, nanoporous membranes separates Li ⁺ and K ⁺ due to induced electromigration. Chemical Communications, 2020, 56, 10954-10957.	2.2	26

#	Article	IF	CITATIONS
109	Preparation of amphiphilic triblock copolymer brushes for surface patterning. Nanotechnology, 2003, 14, 1075-1080.	1.3	25
110	Immobilization of Carboxymethylated Polyethylenimine–Metal-Ion Complexes in Porous Membranes to Selectively Capture His-Tagged Protein. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2575-2584.	4.0	25
111	Moderate pH changes alter the fluxes, selectivities and limiting currents in ion transport through polyelectrolyte multilayers deposited on membranes. Journal of Membrane Science, 2020, 616, 118570.	4.1	25
112	Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. Journal of Membrane Science, 2022, 647, 120294.	4.1	25
113	Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles. Chemical Engineering Research and Design, 2016, 106, 101-114.	2.7	24
114	Electron transfer in hybrid molecular solid-state devices. Synthetic Metals, 1996, 76, 245-248.	2.1	21
115	Esterification and Ether Formation at a Hydroxyl-Terminated Self-Assembled Monolayer Surface Using Low-Energy Collisions of Polyatomic Cations. Langmuir, 2002, 18, 4799-4808.	1.6	21
116	Adsorption of Anionic or Cationic Surfactants in Polyanionic Brushes and Its Effect on Brush Swelling and Fouling Resistance during Emulsion Filtration. Langmuir, 2015, 31, 11790-11799.	1.6	21
117	Detection of Protamine and Heparin Using Electrodes Modified with Poly(acrylic acid) and Its Amine Derivative. Electroanalysis, 2001, 13, 1447-1453.	1.5	20
118	Effects of Monomer Composition on CO ₂ â^'Selective Polymer Brush Membranes. Chemistry of Materials, 2010, 22, 4026-4033.	3.2	20
119	Polyelectrolyte multilayers as anti-adhesive membrane coatings for virus concentration and recovery. Journal of Membrane Science, 2014, 469, 140-150.	4.1	20
120	Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10164-10173.	4.0	20
121	Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration. Applied and Environmental Microbiology, 2016, 82, 4982-4993.	1.4	20
122	Aqueous Swelling of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in the Presence of Ionic Surfactants. Macromolecules, 2018, 51, 1161-1171.	2.2	20
123	Limited proteolysis in porous membrane reactors containing immobilized trypsin. Analyst, The, 2017, 142, 2578-2586.	1.7	19
124	Identification of p65-Associated Phosphoproteins by Mass Spectrometry after On-Plate Phosphopeptide Enrichment Using Polymer-oxotitanium Films. Journal of Proteome Research, 2010, 9, 3005-3015.	1.8	18
125	Bifunctional polymer brushes for low-bias enrichment of mono- and multi-phosphorylated peptides prior to mass spectrometry analysis. Analyst, The, 2011, 136, 3595.	1.7	17
126	Rapid Protein Digestion and Purification with Membranes Attached to Pipet Tips. Analytical Chemistry, 2015, 87, 11984-11989.	3.2	17

#	Article	IF	CITATIONS
127	Monoclonal Antibody Capture and Analysis Using Porous Membranes Containing Immobilized Peptide Mimotopes. Analytical Chemistry, 2018, 90, 12161-12167.	3.2	16
128	Deviations from Electroneutrality in Membrane Barrier Layers: A Possible Mechanism Underlying High Salt Rejections. Langmuir, 2016, 32, 2644-2658.	1.6	15
129	Oil droplet behavior on model nanofiltration membrane surfaces under conditions of hydrodynamic shear and salinity. Journal of Colloid and Interface Science, 2020, 560, 247-259.	5.0	14
130	Highly selective ion separations based on counter-flow electromigration in nanoporous membranes. Journal of Membrane Science, 2021, 638, 119684.	4.1	13
131	Crystallization kinetics of polymer brushes with poly(ethylene oxide) side chains. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1955-1959.	2.4	11
132	Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. Annual Review of Analytical Chemistry, 2015, 8, 81-100.	2.8	11
133	Porous star-star polyelectrolyte multilayers for protein binding. Polymer, 2018, 138, 267-274.	1.8	11
134	Highly Rectifying Fluidic Diodes Based on Asymmetric Layer-by-Layer Nanofilms on Nanochannel Membranes. Analytical Chemistry, 2021, 93, 4291-4298.	3.2	11
135	Determination of the Serum Concentrations of the Monoclonal Antibodies Bevacizumab, Rituximab, and Panitumumab Using Porous Membranes Containing Immobilized Peptide Mimotopes. Analytical Chemistry, 2021, 93, 7562-7570.	3.2	11
136	Control of Teflon AF 2400 Permeability in a Liquid-Core Waveguide by an Ultra-Thin Crosslinked Polyamide Coating. Applied Spectroscopy, 2002, 56, 574-578.	1.2	9
137	Rapid screening and scaleâ€up of ultracentrifugationâ€free, membraneâ€based procedures for purification of Hisâ€tagged membrane proteins. Biotechnology Progress, 2019, 35, e2859.	1.3	9
138	Quantitation of Trastuzumab and an Antibody to SARS-CoV-2 in Minutes Using Affinity Membranes in 96-Well Plates. Analytical Chemistry, 2022, 94, 884-891.	3.2	9
139	Membrane-Based Affinity Purification to Identify Target Proteins of a Small-Molecule Drug. Analytical Chemistry, 2020, 92, 11912-11920.	3.2	8
140	Enzyme-containing spin membranes for rapid digestion and characterization of single proteins. Analyst, The, 2018, 143, 3907-3917.	1.7	6
141	Wet Air Oxidation of Formic Acid Using Nanoparticle-Modified Polysulfone Hollow Fibers as Gas–Liquid Contactors. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1440-1448.	4.0	5
142	Ion Separations Based on Spontaneously Arising Streaming Potentials in Rotating Isoporous Membranes. Membranes, 2022, 12, 631.	1.4	5
143	A Limiting Case of Constant Counterion Electrochemical Potentials in the Membrane for Examining lon Transfer at Ion-Exchange Membranes and Patches. Langmuir, 2019, 35, 13243-13256.	1.6	4
144	Highly Selective Currentâ€Induced Accumulation of Trace Ions at Microâ€INanoPorous Interfaces. Advanced Theory and Simulations, 2019, 2, 1900009.	1.3	4

#	Article	IF	CITATIONS
145	Electro-osmo-dialysis through nanoporous layers physically conjugated to micro-perforated ion-exchange membranes: Highly selective accumulation of trace coions. Journal of Membrane Science, 2021, 622, 119022.	4.1	4
146	Molecular Approach to Surface Control of Chalcogenide Semiconductors. Japanese Journal of Applied Physics, 1993, 32, 730.	0.8	4
147	Spontaneous Vesicle Formation from Poly $(1,2)$ -butylene oxide) Sulfate Oligomers. Langmuir, 2003, 19, 5550-5552.	1.6	3
148	Bottle Brush Brushes: Ring-Opening Polymerization of Lactide from Poly(hydroxyethyl methacrylate) Surfaces., 2005,, 105-117.		3
149	Electroblotting through a tryptic membrane for LC-MS/MS analysis of proteins separated in electrophoretic gels. Analyst, The, 2020, 145, 7724-7735.	1.7	3
150	Currentâ€Induced Ion Concentration Polarization at a Perfect Ionâ€Exchange Patch in an Infinite Insulating Wall. ChemElectroChem, 2020, 7, 1480-1498.	1.7	3
151	Electroblotting through Enzymatic Membranes to Enhance Molecular Tissue Imaging. Journal of the American Society for Mass Spectrometry, 2021, 32, 1689-1699.	1.2	3
152	Controlling the Ion-Permeability of Layered Polyelectrolyte Films and Membranes., 0,, 487-510.		1
153	Formation of Composite Membranes with Ultrathin Skins Using New Methods of Organic Film Formation: Gas-Selective Membranes. ACS Symposium Series, 2004, , 269-280.	0.5	1
154	Formation of Multilamellar Vesicles from Ethylene Oxide-I,2-Butylene Oxide Diblock Copolymers. ACS Symposium Series, 2003, , 328-345.	0.5	0