
Teresa Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575476/publications.pdf Version: 2024-02-01

TEDESA SHADEZ

#	Article	IF	CITATIONS
1	Intracellular Mechanical Drugs Induce Cell ycle Altering and Cell Death. Advanced Materials, 2022, 34, e2109581.	21.0	1
2	Exploring the Origin and Physiological Significance of DNA Double Strand Breaks in the Developing Neuroretina. International Journal of Molecular Sciences, 2022, 23, 6449.	4.1	2
3	Integrating magnetic capabilities to intracellular chips for cell trapping. Scientific Reports, 2021, 11, 18495.	3.3	1
4	Reversals in complex traits uncovered as reticulation events: Lessons from the evolution of parityâ€mode, chromosome morphology, and maternal resource transfer. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 5-13.	1.3	5
5	RAG-2 deficiency results in fewer phosphorylated histone H2AX foci, but increased retinal ganglion cell death and altered axonal growth. Scientific Reports, 2019, 9, 18486.	3.3	10
6	Population structure of the oviparous South-West European common lizard. European Journal of Wildlife Research, 2019, 65, 1.	1.4	4
7	Phylogeography, evolutionary history and effects of glaciations in a species (<i>Zootoca vivipara</i>) inhabiting multiple biogeographic regions. Journal of Biogeography, 2018, 45, 1616-1627.	3.0	35
8	Suspended Planarâ€Array Chips for Molecular Multiplexing at the Microscale. Advanced Materials, 2016, 28, 1449-1454.	21.0	20
9	Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes. Advances in Experimental Medicine and Biology, 2016, 896, 167-184.	1.6	5
10	Increased neuronal death and disturbed axonal growth in the Polμ-deficient mouse embryonic retina. Scientific Reports, 2016, 6, 25928.	3.3	7
11	Stalk cell differentiation without polyketides in the cellular slime mold. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1368-1374.	1.3	4
12	Silicon chips detect intracellular pressure changes in living cells. Nature Nanotechnology, 2013, 8, 517-521.	31.5	68
13	Mef2A, a homologue of animal Mef2 transcription factors, regulates cell differentiation in Dictyostelium discoideum. BMC Developmental Biology, 2013, 13, 12.	2.1	7
14	The NMRA/NMRAL1 homologue PadA modulates the expression of extracellular cAMP relay genes during aggregation in Dictyostelium discoideum. Developmental Biology, 2013, 381, 411-422.	2.0	11
15	Role of Bacterial Surface Structures on the Interaction of Klebsiella pneumoniae with Phagocytes. PLoS ONE, 2013, 8, e56847.	2.5	119
16	Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae). BMC Evolutionary Biology, 2011, 11, 347.	3.2	32
17	Intracellular Silicon Chips in Living Cells. Small, 2010, 6, 499-502.	10.0	35
18	DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death and Differentiation, 2010, 17, 1697-1706.	11.2	20

TERESA SUAREZ

#	Article	IF	CITATIONS
19	Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans. Eukaryotic Cell, 2010, 9, 1441-1454.	3.4	59
20	The Dictyostelium discoideum acaA Gene Is Transcribed from Alternative Promoters during Aggregation and Multicellular Development. PLoS ONE, 2010, 5, e13286.	2.5	18
21	A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Developmental Biology, 2008, 321, 331-342.	2.0	19
22	Activation of theAspergillusPacC zinc finger transcription factor requires two proteolytic steps. EMBO Journal, 2002, 21, 1350-1359.	7.8	120
23	On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO Journal, 2000, 19, 2391-2391.	7.8	1
24	On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO Journal, 2000, 19, 719-728.	7.8	59
25	The EssentialAspergillus nidulansCenepmaAEncodes an Homologue of Fungal Plasma Membrane H+-ATPases. Fungal Genetics and Biology, 1998, 23, 288-299.	2.1	14
26	Mutations in a dispensable region of the UaY transcription factor of Aspergillus nidulans differentially affect the expression of structural genes. Molecular Microbiology, 1997, 24, 1189-1199.	2.5	10
27	Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB–pcbC promoter of the penicillin biosynthetic cluster. Molecular Microbiology, 1996, 20, 529-540.	2.5	126
28	Operator derepressed mutations in the proline utilisation gene cluster of Aspergillus nidulans. Molecular Genetics and Genomics, 1993, 236-236, 209-213.	2.4	65
29	The uaY positive control gene of Aspergillus nidulans: fine structure, isolation of constitutive mutants and reversion patterns. Molecular Genetics and Genomics, 1991, 230, 359-368.	2.4	25
30	Molecular cloning of the uaY regulatory gene of Aspergillus nidulans reveals a favoured region for DNA insertions. Molecular Genetics and Genomics, 1991, 230, 369-375.	2.4	32
31	Transformation of Phycomyces with a bacterial gene for kanamycin resistance. Molecular Genetics and Genomics, 1988, 212, 120-123.	2.4	40
32	Helper strains for shortening the dormancy in Phycomyces blakesleeanus. Current Genetics, 1985, 9, 369-372.	1.7	3
33	Isolation, regeneration, and fusion of Phycomyces blakesleeanus spheroplasts. Experimental Mycology, 1985, 9, 3-11.	1.6	14