
George Sgouros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry—Standardization of Nomenclature. Journal of Nuclear Medicine, 2009, 50, 477-484.	5.0	633
2	Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature Reviews Drug Discovery, 2020, 19, 589-608.	46.4	370
3	Radioimmunotherapy with alpha-emitting nuclides. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 1341-1351.	6.4	343
4	MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy. Journal of Nuclear Medicine, 2012, 53, 1310-1325.	5.0	293
5	MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative ¹⁷⁷ Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2016, 57, 151-162.	5.0	235
6	Sequential Cytarabine and α-Particle Immunotherapy with Bismuth-213–Lintuzumab (HuM195) for Acute Myeloid Leukemia. Clinical Cancer Research, 2010, 16, 5303-5311.	7.0	234
7	Patient-specific dosimetry for 1311 thyroid cancer therapy using 1241 PET and 3-dimensional-internal dosimetry (3D-ID) software. Journal of Nuclear Medicine, 2004, 45, 1366-72.	5.0	196
8	MIRD Pamphlet No. 20: The Effect of Model Assumptions on Kidney Dosimetry and Response—Implications for Radionuclide Therapy. Journal of Nuclear Medicine, 2008, 49, 1884-1899.	5.0	168
9	MIRD Pamphlet No. 24: Guidelines for Quantitative ¹³¹ I SPECT in Dosimetry Applications. Journal of Nuclear Medicine, 2013, 54, 2182-2188.	5.0	125
10	Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging-Based Internal Dosimetry. Journal of Nuclear Medicine, 2007, 48, 1008-1016.	5.0	123
11	Antibody-targeted liposomes in cancer therapy and imaging. Expert Opinion on Drug Delivery, 2008, 5, 189-204.	5.0	115
12	A bone marrow toxicity model for ²²³ Ra alpha-emitter radiopharmaceutical therapy. Physics in Medicine and Biology, 2012, 57, 3207-3222.	3.0	105
13	An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Applied Radiation and Isotopes, 1999, 50, 895-904.	1.5	103
14	(2 <i>S</i>)-2-(3-(1-Carboxy-5-(4- ²¹¹ At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2016, 57, 1569-1575.	5.0	101
15	Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates. Cancer, 1997, 80, 2591-2610.	4.1	98
16	Therapeutic advantages of Auger electron- over β-emitting radiometals or radioiodine when conjugated to internalizing antibodies. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 753-765.	6.4	93
17	Auger Radiopharmaceutical Therapy Targeting Prostate-Specific Membrane Antigen. Journal of Nuclear Medicine, 2015, 56, 1401-1407.	5.0	90
18	Three-Dimensional Imaging-Based Radiobiological Dosimetry. Seminars in Nuclear Medicine, 2008, 38, 321-334.	4.6	82

GEORGE SCOUROS

#	Article	IF	CITATIONS
19	Radium-223 mechanism of action: implications for use in treatment combinations. Nature Reviews Urology, 2019, 16, 745-756.	3.8	71
20	Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Medical Physics, 2000, 27, 2150-2164.	3.0	60
21	Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 884-895.	6.4	59
22	Preclinical Evaluation of ^{203/212} Pb-Labeled Low-Molecular-Weight Compounds for Targeted Radiopharmaceutical Therapy of Prostate Cancer. Journal of Nuclear Medicine, 2020, 61, 80-88.	5.0	59
23	Radioimmunotherapy of Solid Tumors: Searching for the Right Target. Current Drug Delivery, 2011, 8, 26-44.	1.6	52
24	Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 41-47.	6.4	52
25	ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. Journal of the ICRU, 2021, 21, 1-212.	15.5	52
26	A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1256-1262.	0.8	49
27	Dosimetry for Radiopharmaceutical Therapy. Seminars in Nuclear Medicine, 2014, 44, 172-178.	4.6	47
28	Therapeutic efficacy and dose-limiting toxicity of auger-electronvs. beta emitters in radioimmunotherapy with internalizing antibodies: Evaluation of125I-vs.131I-labeled CO17-1A in a human colorectal cancer model. , 1998, 76, 738-748.		45
29	Hematologic Toxicity in Radioimmunotherapy: Dose-Response Relationships for I-131 Labeled Antibody Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2002, 17, 435-443.	1.0	44
30	Current Status of Radiopharmaceutical Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 891-901.	0.8	44
31	Recombinant Human Thyroid-Stimulating Hormone Versus Thyroid Hormone Withdrawal in ¹²⁴ I PET/CT–Based Dosimetry for ¹³¹ I Therapy of Metastatic Differentiated Thyroid Cancer. Journal of Nuclear Medicine, 2017, 58, 1146-1154.	5.0	42
32	Overcoming the nephrotoxicity of radiometalâ€labeled immunoconjugates. Cancer, 1997, 80, 2591-2610.	4.1	42
33	Tumor Dosimetry and Response for ¹⁵³ Sm-Ethylenediamine Tetramethylene Phosphonic Acid Therapy of High-Risk Osteosarcoma. Journal of Nuclear Medicine, 2012, 53, 215-224.	5.0	36
34	Preclinical Evaluation of 86Y-Labeled Inhibitors of Prostate-Specific Membrane Antigen for Dosimetry Estimates. Journal of Nuclear Medicine, 2015, 56, 628-634.	5.0	35
35	Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Research, 2017, 7, 57.	2.5	35
36	An Approach for Balancing Diagnostic Image Quality with Cancer Risk: Application to Pediatric Diagnostic Imaging of ^{99m} Tc-Dimercaptosuccinic Acid. Journal of Nuclear Medicine, 2011, 52, 1923-1929.	5.0	33

GEORGE SCOUROS

#	Article	IF	CITATIONS
37	Modelling and Dosimetry for Alpha-Particle Therapy. Current Radiopharmaceuticals, 2011, 4, 261-265.	0.8	32
38	Improved tumor imaging and therapy via i.v. IgG–mediated time-sequential modulation of neonatal Fc receptor. Journal of Clinical Investigation, 2007, 117, 2422-2430.	8.2	31
39	Dosimetry, Radiobiology and Synthetic Lethality: Radiopharmaceutical Therapy (RPT) With Alpha-Particle-Emitters. Seminars in Nuclear Medicine, 2020, 50, 124-132.	4.6	29
40	Dosimetry and Radiobiology of Alpha-Particle Emitting Radionuclides. Current Radiopharmaceuticals, 2018, 11, 209-214.	0.8	20
41	Yttrium-90 biodistribution by yttrium-87 imaging: A theoretical feasibility analysis. Medical Physics, 1998, 25, 1487-1490.	3.0	17
42	A risk index for pediatric patients undergoing diagnostic imaging with ^{99m} Tc-dimercaptosuccinic acid that accounts for body habitus. Physics in Medicine and Biology, 2016, 61, 2319-2332.	3.0	17
43	Preclinical evaluation of ²¹³ Bi-/ ²²⁵ Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. Journal of Nuclear Medicine, 2021, 62, jnumed.120.256388.	5.0	17
44	Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?. Antibodies, 2012, 1, 124-148.	2.5	16
45	Radiopharmaceutical therapy in the era of precision medicine. European Journal of Cancer, 2014, 50, 2360-2363.	2.8	16
46	Imaging and dosimetry for alpha-particle emitter radiopharmaceutical therapy: improving radiopharmaceutical therapy by looking into the black box. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49, 18-29.	6.4	15
47	Overcoming Barriers to Radiopharmaceutical Therapy (RPT): An Overview From the NRG-NCI Working Group on Dosimetry of Radiopharmaceutical Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 905-912.	0.8	13
48	Combined model-based and patient-specific dosimetry for 18F-DCFPyL, a PSMA-targeted PET agent. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 989-998.	6.4	12
49	Comparative Dosimetry for ⁶⁸ Ga-DOTATATE: Impact of Using Updated ICRP Phantoms, S Values, and Tissue-Weighting Factors. Journal of Nuclear Medicine, 2018, 59, 1281-1288.	5.0	12
50	Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy. EJNMMI Physics, 2015, 2, 5.	2.7	10
51	Mathematical Modeling of Preclinical Alpha-Emitter Radiopharmaceutical Therapy. Cancer Research, 2020, 80, 868-876.	0.9	10
52	Strengths and Weaknesses of a Planar Whole-Body Method of 153Sm Dosimetry for Patients with Metastatic Osteosarcoma and Comparison with Three-Dimensional Dosimetry. Cancer Biotherapy and Radiopharmaceuticals, 2015, 30, 369-379.	1.0	9
53	Quantitative impact of changes in marrow cellularity, skeletal size, and bone mineral density on active marrow dosimetry based upon a reference model. Medical Physics, 2017, 44, 272-283.	3.0	8
54	68Ga-DOTATATE PET. Nuclear Medicine Communications, 2019, 40, 920-926.	1.1	8

GEORGE SCOUROS

#	Article	IF	CITATIONS
55	Current pediatric administered activity guidelines for ^{99m} Tcâ€DMSA SPECT based on patient weight do not provide the same taskâ€based image quality. Medical Physics, 2019, 46, 4847-4856.	3.0	7
56	Specific absorbed fractions and radionuclide S-values for tumors of varying size and composition. Physics in Medicine and Biology, 2020, 65, 235015.	3.0	7
57	Mathematical model of 5-[125I]iodo-2′-deoxyuridine treatment: continuous infusion regimens for hepatic metastases. International Journal of Radiation Oncology Biology Physics, 1998, 41, 1177-1183.	0.8	6
58	The Role of Preclinical Models in Radiopharmaceutical Therapy. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e121-e125.	3.8	6
59	Overview of the First NRG Oncology–National Cancer Institute Workshop on Dosimetry of Systemic Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2021, 62, 1133-1139.	5.0	5
60	Toward Individualized Voxel-Level Dosimetry for Radiopharmaceutical Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 902-904.	0.8	5
61	Body morphometry appropriate computational phantoms for dose and risk optimization in pediatric renal imaging with Tc-99m DMSA and Tc-99m MAG3. Physics in Medicine and Biology, 2020, 65, 235026.	3.0	5
62	Depthâ€dependent concentrations of hematopoietic stem cells in the adult skeleton: Implications for active marrow dosimetry. Medical Physics, 2017, 44, 747-761.	3.0	4
63	²¹² Pb-conjugated anti-rat HER2/ <i>neu</i> antibody against a <i>neu</i> -N derived murine mammary carcinoma cell line: cell kill and RBE inÂvitro. International Journal of Radiation Biology, 2022, 98, 1452-1461.	1.8	4
64	I-124 PET/CT image-based dosimetry in patients with differentiated thyroid cancer treated with I-131: correlation of patient-specific lesional dosimetry to treatment response. Annals of Nuclear Medicine, 2022, 36, 213-223.	2.2	4
65	Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4382-4393.	6.4	4
66	Dosimetric considerations of 99mTc-MDP uptake within the epiphyseal plates of the long bones of pediatric patients. Physics in Medicine and Biology, 2020, 65, 235025.	3.0	3
67	Development and evaluation of convergent and accelerated penalized SPECT image reconstruction methods for improved dose–volume histogram estimation in radiopharmaceutical therapy. Medical Physics, 2014, 41, 112507.	3.0	2
68	Process validation, current good manufacturing practice production, dosimetry, and toxicity studies of the carbonic anhydrase IX imaging agent [111 In]Inâ€XYIMSRâ€01 for phase I regulatory approval. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 243-250.	1.0	2
69	General solution of the radioactive parent-daughter relationship. Medical Physics, 1994, 21, 1739-1740.	3.0	1

70 Spheroids of Prostate Tumor Cell Lines. , 2003, 81, 79-88.