Duangjai Tungmunnithum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel, Switzerland), 2018, 5, 93.	0.7	972
2	The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews, 2018, 11, 492-502.	2.1	129
3	Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines (Basel, Switzerland), 2020, 7, 26.	0.7	123
4	Differential Production of Phenylpropanoid Metabolites in Callus Cultures of <i>Ocimum basilicum</i> L. with Distinct <i>In Vitro</i> Antioxidant Activities and <i>In Vivo</i> Protective Effects against UV stress. Journal of Agricultural and Food Chemistry, 2019, 67, 1847-1859.	2.4	78
5	An Overview of Bioactive Flavonoids from Citrus Fruits. Applied Sciences (Switzerland), 2022, 12, 29.	1.3	56
6	Effect of Ultraviolet-C Radiation and Melatonin Stress on Biosynthesis of Antioxidant and Antidiabetic Metabolites Produced in In Vitro Callus Cultures of Lepidium sativum L International Journal of Molecular Sciences, 2019, 20, 1787.	1.8	43
7	Flavonoids from Nelumbo nucifera Gaertn., a Medicinal Plant: Uses in Traditional Medicine, Phytochemistry and Pharmacological Activities. Medicines (Basel, Switzerland), 2018, 5, 127.	0.7	41
8	Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax (Linum usitatissimum L.) Seeds. Molecules, 2018, 23, 2636.	1.7	40
9	Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L PLoS ONE, 2020, 15, e0233963.	1.1	39
10	Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants, 2020, 9, 576.	2.2	38
11	Effects of Biogenic Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response in Flax Seedlings vs. In Vitro Cultures: A Comparative Analysis. Biomolecules, 2020, 10, 918.	1.8	35
12	Puerarin exhibits weak estrogenic activity in female rats. Fìtoterapìâ, 2010, 81, 569-576.	1.1	34
13	Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn Molecules, 2019, 24, 1207.	1.7	33
14	A Green Ultrasound-Assisted Extraction Optimization of the Natural Antioxidant and Anti-Aging Flavonolignans from Milk Thistle Silybum marianum (L.) Gaertn. Fruits for Cosmetic Applications. Antioxidants, 2019, 8, 304.	2.2	32
15	Callus Culture of Thai Basil Is an Effective Biological System for the Production of Antioxidants. Molecules, 2020, 25, 4859.	1.7	30
16	Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L Journal of Photochemistry and Photobiology B: Biology, 2019, 196, 111505.	1.7	28
17	Isodon rugosus (Wall. ex Benth.) Codd In Vitro Cultures: Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities. International Journal of Molecular Sciences, 2019, 20, 452.	1.8	28
18	Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. Applied Sciences (Switzerland), 2021, 11, 1694.	1.3	28

#	Article	IF	CITATIONS
19	Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules, 2020, 25, 2203.	1.7	27
20	A Quick, Green and Simple Ultrasound-Assisted Extraction for the Valorization of Antioxidant Phenolic Acids from Moroccan Almond Cold-Pressed Oil Residues. Applied Sciences (Switzerland), 2020, 10, 3313.	1.3	27
21	Chitosan Elicitation Impacts Flavonolignan Biosynthesis in Silybum marianum (L.) Gaertn Cell Suspension and Enhances Antioxidant and Anti-Inflammatory Activities of Cell Extracts. Molecules, 2021, 26, 791.	1.7	25
22	A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications. Cosmetics, 2018, 5, 30.	1.5	24
23	A Critical Cross-Species Comparison of Pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for Authentication of Thai Medicinal Herbal Tea. Plants, 2020, 9, 921.	1.6	24
24	Green Ultrasound Assisted Extraction of trans Rosmarinic Acid from Plectranthus scutellarioides (L.) R.Br. Leaves. Plants, 2019, 8, 50.	1.6	22
25	Exogenous application of salicylic acid and gibberellic acid on biomass accumulation, antioxidant and anti-inflammatory secondary metabolites production in multiple shoot culture of Ajuga integrifolia Buch. Ham. ex D.Don. Industrial Crops and Products, 2020, 145, 112098.	2.5	21
26	Almond Skin Extracts and Chlorogenic Acid Delay Chronological Aging and Enhanced Oxidative Stress Response in Yeast. Life, 2020, 10, 80.	1.1	18
27	Cosmetic Potential of Cajanus cajan (L.) Millsp: Botanical Data, Traditional Uses, Phytochemistry and Biological Activities. Cosmetics, 2020, 7, 84.	1.5	17
28	A Promising View of Kudzu Plant, Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep: Flavonoid Phytochemical Compounds, Taxonomic Data, Traditional Uses and Potential Biological Activities for Future Cosmetic Application. Cosmetics, 2020, 7, 12.	1.5	17
29	Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. Cosmetics, 2020, 7, 89.	1.5	16
30	Gene Expression Analysis and Metabolite Profiling of Silymarin Biosynthesis during Milk Thistle (Silybum marianum (L.) Gaertn.) Fruit Ripening. International Journal of Molecular Sciences, 2020, 21, 4730.	1.8	14
31	A Cosmetic Perspective on the Antioxidant Flavonoids from Nymphaea lotus L Cosmetics, 2021, 8, 12.	1.5	14
32	Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits. Applied Sciences (Switzerland), 2021, 11, 7788.	1.3	14
33	Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231) Tj ETQq1 1 0 Receptor and PI3K/AKT/mTOR Signaling. Molecules, 2022, 27, 3544.	.784314 rg 1.7	gBT /Overloc 14
34	Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods, 2021, 10, 3118.	1.9	12
35	UPLC-HRMS Analysis Revealed the Differential Accumulation of Antioxidant and Anti-Aging Lignans and Neolignans in In Vitro Cultures of Linum usitatissimum L. Frontiers in Plant Science, 2020, 11, 508658.	1.7	10
36	Validation of a High-Performance Liquid Chromatography with Photodiode Array Detection Method for the Separation and Quantification of Antioxidant and Skin Anti-Aging Flavonoids from Nelumbo nucifera Gaertn. Stamen Extract. Molecules, 2022, 27, 1102.	1.7	10

#	Article	IF	CITATIONS
37	Green Extraction of Antioxidant Flavonoids from Pigeon Pea (Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Molecules, 2021, 26, 7557.	1.7	10
38	Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells, 2022, 11, 599.	1.8	9
39	Physiological and molecular responses of flax (Linum usitatissimum L.) cultivars under a multicontaminated technosol amended with biochar. Environmental Science and Pollution Research, 2021, 28, 53728-53745.	2.7	7
40	Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans. Molecules, 2021, 26, 4511.	1.7	6
41	Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express, 2021, 11, 137.	1.4	6
42	Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. Molecules, 2022, 27, 681.	1.7	6
43	Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules, 2022, 27, 4029.	1.7	6
44	Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants, 2022, 11, 67.	1.6	5
45	Morphological variations among populations of Monochoria vaginalis s.l. (Pontederiaceae) in Thailand. Phytotaxa, 2016, 268, 57.	0.1	4
46	Differential Flavonoid and Other Phenolic Accumulations and Antioxidant Activities of Nymphaea lotus L. Populations throughout Thailand. Molecules, 2022, 27, 3590.	1.7	3
47	Rivea hypocrateriformis (Desr.) Choisy: An Overview of Its Ethnomedicinal Uses, Phytochemistry, and Biological Activities and Prospective Research Directions. Journal of Chemistry, 2022, 2022, 1-11.	0.9	3
48	Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. Cosmetics, 2022, 9, 71.	1.5	2
49	Production of Antidiabetic Lignans in Flax Cell Cultures. , 2021, , 383-407.		1
50	Flavonoid Profiles and Antioxidant Potential of Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum, a New Species from the Genus Monochoria C. Presl. Antioxidants, 2022, 11, 952.	2.2	1
51	On "The Most Useful―Oleaginous Seeds: Linum usitatissimum L., A Genomic View with Emphasis on Important Flax Seed Storage Compounds. , 2021. , 135-157.		0