
Esperanza Huerta Lwanga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 2018, 627, 1377-1388.	3.9	846

2 Microplastics in the Terrestrial Ecosystem: Implications for <i>Lumbricus terrestris</i> (Oligochaeta,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 2019, 671, 411-420.	3.9	781
4	Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 2018, 645, 1048-1056.	3.9	711
5	Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 2017, 7, 14071.	1.6	523
6	Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 2017, 220, 523-531.	3.7	479
7	Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 2020, 261, 114198.	3.7	353
8	Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 2020, 387, 121711.	6.5	347
9	Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 2018, 624, 753-757.	3.9	297
10	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
11	Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environmental Pollution, 2020, 266, 115097.	3.7	162
12	Microplastics occurrence and frequency in soils under different land uses on a regional scale. Science of the Total Environment, 2021, 752, 141917.	3.9	158
13	Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Science of the Total Environment, 2021, 755, 142653.	3.9	148
14	Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 2018, 242, 338-347.	3.7	141
15	Predicting soil microplastic concentration using vis-NIR spectroscopy. Science of the Total Environment, 2019, 650, 922-932.	3.9	140
16	Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 2019, 16, 31.	0.7	116
17	Microplastic pollution alters forest soil microbiome. Journal of Hazardous Materials, 2021, 409, 124606.	6.5	100
18	Cocktails of pesticide residues in conventional and organic farming systems in Europe – Legacy of the past and turning point for the future. Environmental Pollution, 2021, 278, 116827.	3.7	90

#	Article	IF	CITATIONS
19	Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Science of the Total Environment, 2021, 798, 149326.	3.9	72
20	Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	69
21	Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments - MDPI, 2021, 8, 36.	1.5	57
22	Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. Environmental Pollution, 2019, 245, 829-835.	3.7	51
23	Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 2017, 149, 43-51.	2.2	47
24	Organochlorine pesticides, polycyclic aromatic hydrocarbons, metals and metalloids in microplastics found in regurgitated pellets of black vulture from Campeche, Mexico. Science of the Total Environment, 2021, 801, 149674.	3.9	35
25	Is the Polylactic Acid Fiber in Green Compost a Risk for Lumbricus terrestris and Triticum aestivum?. Polymers, 2021, 13, 703.	2.0	34
26	Effect of engineered nanoparticles on soil biota: Do they improve the soil quality and crop production or jeopardize them?. Land Degradation and Development, 2020, 31, 2213-2230.	1.8	30
27	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
28	Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. Journal of Tropical Ecology, 2018, 34, 364-377.	0.5	17
29	Microplastics in Soil Ecosystem: Insight on Its Fate and Impacts on Soil Quality. Handbook of Environmental Chemistry, 2020, , 245-258.	0.2	9
30	Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS ONE, 2021, 16, e0259748.	1.1	9
31	Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands. Environments - MDPI, 2022, 9, 5.	1.5	7
32	Morphospecies Abundance of Above-Ground Invertebrates in Agricultural Systems under Glyphosate and Microplastics in South-Eastern Mexico. Environments - MDPI, 2021, 8, 130.	1.5	6
33	Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.). Science of the Total Environment, 2022, 806, 151221.	3.9	2
34	Soil Remediation Under Microplastics Pollution. , 2021, , 1-29.		0
35	Soil Remediation Under Microplastics Pollution. , 2022, , 1173-1201.		Ο