Corentin Pigot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575042/publications.pdf

Version: 2024-02-01

840776 940533 16 399 11 16 citations h-index g-index papers 16 16 16 197 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sunlight Induced Polymerization Photoinitiated by Novel Push–Pull Dyes: Indaneâ€1,3â€Dione, 1Hâ€Cyclopenta[b]Naphthaleneâ€1,3(2H)â€Dione and 4â€Dimethoxyphenylâ€1â€Allylidene Derivatives. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	29
2	Push-pull dyes based on Michler's aldehyde: Design and characterization of the optical and electrochemical properties. Dyes and Pigments, 2022, 202, 110278.	3.7	4
3	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (TCF) acceptor. Dyes and Pigments, 2021, 184, 108807.	3.7	23
4	Synthesis, and the optical and electrochemical properties of a series of push–pull dyes based on the 4-(9-ethyl-9 <i>>H</i> -carbazol-3-yl)-4-phenylbuta-1,3-dienyl donor. New Journal of Chemistry, 2021, 45, 5808-5821.	2.8	6
5	N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. European Polymer Journal, 2021, 147, 110331.	5.4	43
6	Dyes with tunable absorption properties from the visible to the near infrared range: 2,4,5,7-Tetranitrofluorene (TNF) as a unique electron acceptor. Dyes and Pigments, 2021, 189, 109250.	3.7	2
7	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 4,4-bis(4-methoxy phenyl)butadienyl donor. Dyes and Pigments, 2021, 194, 109552.	3.7	4
8	New push-pull dyes based on 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile: An amine-directed synthesis. Dyes and Pigments, 2020, 175, 108182.	3.7	16
9	Molecular engineering in 2D surface covalent organic frameworks: Towards next generation of molecular tectons - A mini review. Synthetic Metals, 2020, 260, 116265.	3.9	7
10	Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts, 2020, 10, 1196.	3.5	38
11	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50
12	Free Radical Photopolymerization and 3D Printing Using Newly Developed Dyes: Indane-1,3-Dione and 1H-Cyclopentanaphthalene-1,3-Dione Derivatives as Photoinitiators in Three-Component Systems. Catalysts, 2020, 10, 463.	3.5	38
13	Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. European Polymer Journal, 2020, 133, 109797.	5.4	73
14	Unprecedented Nucleophilic Attack of Piperidine on the Electron Acceptor during the Synthesis of Pushâ€Pull Dyes by a <i>Knoevenagel</i> Reaction. Helvetica Chimica Acta, 2019, 102, e1900229.	1.6	21
15	Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. Materials, 2019, 12, 1342.	2.9	29
16	Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. Materials, 2019, 12, 662.	2.9	16