Alessandro Mura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4575016/publications.pdf

Version: 2024-02-01

136885 128225 4,130 122 32 60 citations h-index g-index papers 153 153 153 2871 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comparative Na and K Mercury and Moon Exospheres. Space Science Reviews, 2022, 218, 1.	3.7	12
2	Moist convection drives an upscale energy transfer at Jovian high latitudes. Nature Physics, 2022, 18, 357-361.	6.5	18
3	Effects of mercury surface temperature on the sodium abundance in its exosphere. Planetary and Space Science, 2022, 212, 105397.	0.9	3
4	A New Model of Jupiter's Magnetic Field at the Completion of Juno's Prime Mission. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	60
5	The Case for a New Frontiers–Class Uranus Orbiter: System Science at an Underexplored and Unique World with a Mid-scale Mission. Planetary Science Journal, 2022, 3, 58.	1.5	12
6	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	1.5	8
7	The Exosphere as a Boundary: Origin and Evolution of Airless Bodies in the Inner Solar System and Beyond Including Planets with Silicate Atmospheres. Space Science Reviews, 2022, 218, 1.	3.7	6
8	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
9	Exospheric Na distributions along the Mercury orbit with the THEMIS telescope. Icarus, 2021, 355, 114179.	1.1	10
10	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	3.7	26
11	Jupiter. , 2021, , 108-122.		O
12	Are Dawn Storms Jupiter's Auroral Substorms?. AGU Advances, 2021, 2, e2020AV000275.	2.3	25
13	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	1.6	5
14	Multiscale Features of the Near-Hermean Environment as Derived Through the Hilbert-Huang Transform. Frontiers in Physics, 2021, 9, .	1.0	4
15	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	1.5	11
16	A Preliminary Study of Magnetosphereâ€lonosphereâ€Thermosphere Coupling at Jupiter: Juno Multiâ€Instrument Measurements and Modeling Tools. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029469.	0.8	11
17	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	0.8	15
18	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	1.1	23

#	Article	IF	CITATIONS
19	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	1.2	5
20	Deep neural networks for analysis of Mercury's planetary exosphere. Journal of Physics: Conference Series, 2020, 1548, 012014.	0.3	0
21	Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones From Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006096.	1.5	8
22	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	71
23	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	1.5	8
24	Jupiter's Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006399.	1.5	13
25	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	1.5	16
26	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	1.5	24
27	Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation. Planetary and Space Science, 2020, 187, 104902.	0.9	22
28	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	0.9	5
29	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	1.5	14
30	Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophysical Journal, 2020, 900, 74.	1.6	20
31	JUNO/JIRAM's view of Jupiter's H ₃ ⁺ emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180406.	1.6	10
32	H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 2019, 329, 132-139.	1.1	11
33	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	1.1	15
34	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	13.7	90
35	The contribution of the ARIEL space mission to the study of planetary formation. Experimental Astronomy, 2018, 46, 45-65.	1.6	19
36	Mercury sodium exospheric emission as a proxy for solar perturbations transit. Scientific Reports, 2018, 8, 928.	1.6	30

#	Article	IF	Citations
37	Towards a Global Unified Model of Europa's Tenuous Atmosphere. Space Science Reviews, 2018, 214, 1.	3.7	36
38	Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno. Astronomical Journal, 2018, 156, 246.	1.9	5
39	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
40	Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 2018, 312, 145-156.	1.1	18
41	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	6.0	53
42	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	1.5	24
43	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	3.7	91
44	Investigation of the possible effects of comet Encke's meteoroid stream on the Ca exosphere of Mercury. Journal of Geophysical Research E: Planets, 2017, 122, 1217-1226.	1.5	11
45	Multipleâ€wavelength sensing of Jupiter during the Juno mission's first perijove passage. Geophysical Research Letters, 2017, 44, 4607-4614.	1.5	14
46	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	6.0	229
47	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	6.0	109
48	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	1.5	30
49	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	1.5	20
50	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	1.5	20
51	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	1.5	18
52	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	1.5	15
53	Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3. Geophysical Research Letters, 2017, 44, 4481-4488.	1.5	29
54	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	1.5	13

#	Article	IF	CITATIONS
55	Plasma and Fields Evaluation at the Chinese Seismo-Electromagnetic Satellite for Electric Field Detector Measurements. IEEE Access, 2017, 5, 3824-3833.	2.6	9
56	Electric field computation analysis for the Electric Field Detector (EFD) on board the China Seismic-Electromagnetic Satellite (CSES). Advances in Space Research, 2017, 60, 2206-2216.	1.2	6
57	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	1.1	8
58	The Juno Radiation Monitoring (RM) Investigation. Space Science Reviews, 2017, 213, 507-545.	3.7	29
59	Shortâ€term observations of doubleâ€peaked Na emission from Mercury's exosphere. Geophysical Research Letters, 2017, 44, 2970-2977.	1.5	17
60	The Juno Radiation Monitoring (RM) Investigation. , 2017, , 385-423.		0
61	Mapping of hydrocarbons and H 3 + emissions at Jupiter's north pole using Galileo/NIMS data. Geophysical Research Letters, 2016, 43, 11,558.	1.5	7
62	Juno's Earth flyby: the Jovian infrared Auroral Mapper preliminary results. Astrophysics and Space Science, 2016, 361, 1.	0.5	14
63	Analytical model of Europa's O2 exosphere. Planetary and Space Science, 2016, 130, 3-13.	0.9	9
64	3D-modeling of Mercury's solar wind sputtered surface-exosphere environment. Planetary and Space Science, 2015, 115, 90-101.	0.9	36
65	The H2O and O2 exospheres of Ganymede: The result of a complex interaction between the jovian magnetospheric ions and the icy moon. Icarus, 2015, 245, 306-319.	1.1	52
66	The influence of space environment on the evolution of Mercury. Icarus, 2014, 239, 281-290.	1.1	12
67	ELENA microchannel plate detector: absolute detection efficiency for low energy neutral atoms. Optical Engineering, 2013, 52, 051206.	0.5	4
68	Exospheric O2 densities at Europa during different orbital phases. Planetary and Space Science, 2013, 88, 42-52.	0.9	40
69	Energetic neutral particles detection in the environment of Jupiter's icy moons: Ganymede's and Europa's neutral imaging experiment (GENIE). Planetary and Space Science, 2013, 88, 53-63.	0.9	6
70	Dynamical evolution of sodium anisotropies in the exosphere of Mercury. Planetary and Space Science, 2013, 82-83, 1-10.	0.9	22
71	ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms. Proceedings of SPIE, 2012, , .	0.8	2
72	The role of sputtering and radiolysis in the generation of Europa exosphere. lcarus, 2012, 218, 956-966.	1.1	54

#	Article	lF	CITATIONS
73	Loss rates and time scales for sodium at Mercury. Planetary and Space Science, 2012, 63-64, 2-7.	0.9	15
74	Observing planets and small bodies in sputtered high-energy atom fluxes. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
75	Constraints on the exosphere of CoRoT-7b. Astronomy and Astrophysics, 2011, 525, A24.	2.1	28
76	Exosphere generation of the Moon investigated through a high-energy neutral detector. Experimental Astronomy, 2011, 32, 37-49.	1.6	2
77	Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan. Space Science Reviews, 2011, 162, 213-266.	3.7	25
78	Comet-like tail-formation of exospheres of hot rocky exoplanets: Possible implications for CoRoT-7b. Icarus, 2011, 211, 1-9.	1.1	69
79	A nanotechnology application for low energy neutral atom detection with high angular resolution for the BepiColombo mission to Mercury. Microelectronic Engineering, 2011, 88, 2330-2333.	1.1	6
80	Report to cross sections related to plasma–planetary atmosphere interaction processes. Planetary and Space Science, 2011, 59, 801-809.	0.9	3
81	Exospheres and Energetic Neutral Atoms of Mars, Venus and Titan. Space Sciences Series of ISSI, 2011, , 213-266.	0.0	0
82	Exoplanet discoveries with the CoRoT space observatory. Solar System Research, 2010, 44, 520-526.	0.3	4
83	The BepiColombo mission: An outstanding tool for investigating the Hermean environment. Planetary and Space Science, 2010, 58, 40-60.	0.9	43
84	Neutral particle release from Europa's surface. Icarus, 2010, 210, 385-395.	1.1	42
85	Venusian bow shock as seen by the ASPERAâ€4 ion instrument on Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	9
86	Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENAâ^•ELENA sensor., 2009,,.		7
87	Coordinated Study on Solar Wind Turbulence During the Venus-Express, ACE and Ulysses Alignment of August 2007. Earth, Moon and Planets, 2009, 104, 101-104.	0.3	23
88	The sodium exosphere of Mercury: Comparison between observations during Mercury's transit and model results. Icarus, 2009, 200, 1-11.	1.1	80
89	Statistical analysis of the observations of the MEX/ASPERA-3 NPI in the shadow. Planetary and Space Science, 2009, 57, 1000-1007.	0.9	7
90	Space weathering on near-Earth objects investigated by neutral-particle detection. Planetary and Space Science, 2009, 57, 384-392.	0.9	6

#	Article	IF	CITATIONS
91	PROSPECTS OF SOLAR SYSTEM ENVIRONMENT OBSERVATIONS BY MEANS OF ENA DETECTION. , 2009, , 263-291.		1
92	Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planetary and Space Science, 2008, 56, 780-784.	0.9	64
93	The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission. Planetary and Space Science, 2008, 56, 796-801.	0.9	22
94	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	0.9	102
95	Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	0.9	48
96	First observation of energetic neutral atoms in the Venus environment. Planetary and Space Science, 2008, 56, 807-811.	0.9	19
97	Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 2008, 56, 812-817.	0.9	48
98	ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planetary and Space Science, 2008, 56, 840-845.	0.9	18
99	On the impact of multiply charged heavy solar wind ions on the surface of Mercury, the Moon and Ceres. Planetary and Space Science, 2008, 56, 1506-1516.	0.9	27
100	Processes that Promote and Deplete the Exosphere ofÂMercury. Space Sciences Series of ISSI, 2008, , 251-327.	0.0	2
101	Numerical simulations of coronal hole-associated neutral solar wind as expected at the Solar Orbiter position. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	3
102	The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planetary and Space Science, 2007, 55, 1541-1556.	0.9	48
103	Numerical and analytical model of Mercury's exosphere: Dependence on surface and external conditions. Planetary and Space Science, 2007, 55, 1569-1583.	0.9	40
104	Modelling Mercury's magnetosphere and plasma entry through the dayside magnetopause. Planetary and Space Science, 2007, 55, 1557-1568.	0.9	29
105	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planetary and Space Science, 2007, 55, 1772-1792.	0.9	214
106	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	13.7	168
107	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Science Reviews, 2007, 126, 113-164.	3.7	241
108	Processes that Promote and Deplete the Exosphere ofÂMercury. Space Science Reviews, 2007, 132, 433-509.	3.7	121

#	Article	IF	CITATIONS
109	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. , 2007, , 113-164.		2
110	Geomagnetic activity dependence of the inner magnetospheric proton distribution: An empirical approach for the $21\hat{a}\in$ 25 April 2001 storm. Journal of Geophysical Research, 2006, 111, .	3.3	4
111	Neutral atom imaging at Mercury. Planetary and Space Science, 2006, 54, 144-152.	0.9	15
112	NEUTRAL ATOM EMISSION FROM MERCURY. , 2006, , 37-50.		3
113	THE DAYSIDE MAGNETOSPHERE OF MERCURY. , 2006, , 29-36.		0
114	Dayside H+ circulation at Mercury and neutral particle emission. Icarus, 2005, 175, 305-319.	1.1	39
115	Surface-Exosphere-Magnetosphere System Of Mercury. Space Science Reviews, 2005, 117, 397-443.	3.7	76
116	Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 2004, 305, 1933-1936.	6.0	204
117	Modeling the time-evolving plasma in the inner magnetosphere: An empirical approach. Journal of Geophysical Research, 2004, 109 , .	3.3	7
118	Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 2003, 166, 229-237.	1.1	83
119	Empirical model of proton fluxes in the equatorial inner magnetosphere: 2. Properties and applications. Journal of Geophysical Research, 2003, 108, .	3.3	17
120	A quantitative model of the planetary Na ⁺ contribution to Mercury's magnetosphere. Annales Geophysicae, 2003, 21, 1723-1736.	0.6	106
121	Energetic neutral atoms at Mars 2. Imaging of the solar wind-Phobos interaction. Journal of Geophysical Research, 2002, 107, SSH 5-1.	3.3	23
122	Empirical Model of the Inner Magnetosphere H ⁺ Pitch Angle Distributions. Geophysical Monograph Series, 0, , 283-291.	0.1	7