
Brandon L Ashfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574933/publications.pdf Version: 2024-02-01

		CITATIONS
1Rational Design and Identification of Harmineâ€Inspired, N â€Heterocyclic DYRK1A Inhibitors Employing a Functional Genomic In Vivo Drosophila Model System**. ChemMedChem, 2022, , .3.22	1	2

Front Cover: Rational Design and Identification of Harmineâ€Inspired, <i>N</i>â€Heterocyclic DYRK1A Inhibitors Employing a Functional Genomic In Vivo <i>Drosophila</i>Model System (ChemMedChem) Tj ETQq0 0 OrgBT /Ov@lock 10 T

3	Generation of Functionalized Azepinone Derivatives via a (4 + 3)-Cycloaddition of Vinyl Ketenes and α-Imino Carbenes Derived from <i>N</i> -Sulfonyl-triazoles. Journal of Organic Chemistry, 2022, 87, 3825-3833.	3.2	3
4	Controlling phase separation behavior of thermo-responsive ionic liquids through the directed distribution of anionic charge. Journal of Molecular Liquids, 2022, 360, 119401.	4.9	4
5	Ionic liquid enables highly efficient low temperature desalination by directional solvent extraction. Nature Communications, 2021, 12, 437.	12.8	42
6	(4+1)-Cycloadditions Exploiting the Biphilicity of Oxyphosphonium Enolates and RhII/PdII-Stabilized Metallocarbenes for the Construction of Five-Membered Frameworks. Synlett, 2021, 32, 1157-1168.	1.8	3
7	A Phosphine-Mediated Dearomative Skeletal Rearrangement of Dianiline Squaraine Dyes. Organic Letters, 2021, 23, 2853-2857.	4.6	5
8	Oxyphosphonium Enolate Equilibria in a (4+1) ycloaddition Approach toward Quaternary C3‧pirooxindole Assembly. Chemistry - A European Journal, 2021, 27, 10349-10355.	3.3	5
9	Transition metal-free strategies for the stereoselective construction of spirocyclopropyl oxindoles. Tetrahedron, 2020, 76, 130692.	1.9	10
10	Diverting β-Hydride Elimination of a π-Allyl Pd ^{II} Carbene Complex for the Assembly of Disubstituted Indolines via a Highly Diastereoselective (4 + 1)-Cycloaddition. Organic Letters, 2020, 22, 6605-6609.	4.6	21
11	Combined Scaffold Evaluation and Systemsâ€Level Transcriptomeâ€Based Analysis for Accelerated Lead Optimization Reveals Ribosomal Targeting Spirooxindole Cyclopropanes. ChemMedChem, 2019, 14, 1653-1661.	3.2	11
12	Nucleophilic addition of phosphorus(<scp>iii</scp>) derivatives to squaraines: colorimetric detection of transition metal-mediated or thermal reversion. Chemical Communications, 2019, 55, 3286-3289.	4.1	7
13	A Phosphorus(III)â€Mediated (4+1)â€Cycloaddition of 1,2â€Dicarbonyls and Aza―o â€Quinone Methides to Acc 2,3â€Dihydroindoles. Helvetica Chimica Acta, 2019, 102, e1900192.	cess 1.6	10
14	An unusual stereoretentive 1,3-quaternary carbon shift resulting in an enantioselective Rh ^{II} -catalyzed formal [4+1]-cycloaddition between diazo compounds and vinyl ketenes. Chemical Science, 2018, 9, 3221-3226.	7.4	29
15	Aroyl Isocyanates as 1,4-Dipoles in a Formal [4 + 1]-Cycloaddition Approach toward Oxazolone Construction. Organic Letters, 2018, 20, 2315-2319.	4.6	25
16	GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain Metastatic Microenvironment. Cancer Research, 2017, 77, 2844-2856.	0.9	33
17	A Rhodium(II) atalyzed Formal [4+1] ycloaddition toward Spirooxindole Pyrrolone Construction Employing Vinyl Isocyanates as 1,4â€Dipoles. Angewandte Chemie - International Edition, 2017, 56, 6604-6608.	13.8	41
18	Rearrangement of an Intermediate Cyclopropyl Ketene in a Rh ^{II} -Catalyzed Formal [4 + 1]-Cycloaddition Employing Vinyl Ketenes as 1,4-Dipoles and Donor–Acceptor Metallocarbenes. Organic Letters, 2017, 19, 2482-2485.	4.6	27

Brandon L Ashfeld

#	Article	IF	CITATIONS
19	A Rhodium(II)â€Catalyzed Formal [4+1]â€Cycloaddition toward Spirooxindole Pyrrolone Construction Employing Vinyl Isocyanates as 1,4â€Dipoles. Angewandte Chemie, 2017, 129, 6704-6708.	2.0	31
20	Abstract 4934: Brain metastatic microenvironment reshapes cancer cell metabolism through epigenetic up-regulation of glutamate decarboxylase 1. , 2017, , .		0
21	Phosphorus(III)-Mediated Stereoconvergent Formal [4+1]-Cycloannulation of 1,2-Dicarbonyls and <i>o</i> -Quinone Methides: A Multicomponent Assembly of 2,3-Dihydrobenzofurans. Organic Letters, 2016, 18, 4514-4517.	4.6	65
22	Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis. Nature Microbiology, 2016, 1, 15004.	13.3	23
23	Phosphine-mediated addition of 1,2-dicarbonyls to diazenes: an umpolung approach toward N-acyl hydrazone synthesis. Tetrahedron Letters, 2015, 56, 3527-3530.	1.4	21
24	Stereochemical implications in the synthesis of $3,3\hat{a}\in^2$ -spirocyclopropyl oxindoles from \hat{l}^2 -aryl/alkyl-substituted alkylidene oxindoles. Tetrahedron, 2015, 71, 5765-5775.	1.9	45
25	Redox and Lewis Acid Relay Catalysis: A Titanocene/Zinc Catalytic Platform in the Development of Multicomponent Coupling Reactions. Journal of Organic Chemistry, 2014, 79, 12083-12095.	3.2	10
26	An umpolung approach toward N-aryl nitrone construction: a phosphine-mediated addition of 1,2-dicarbonyls to nitroso electrophiles. Chemical Communications, 2014, 50, 10853-10856.	4.1	41
27	Titanocene-catalyzed metallation of propargylic acetates in homopropargyl alcohol synthesis. Tetrahedron Letters, 2014, 55, 5025-5028.	1.4	4
28	Solid‣tate Covalent Capture of CO ₂ by Using Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2013, 19, 11134-11138.	3.3	30
29	Amineâ€Free Approach toward <i>N</i> â€Toluenesulfonyl Amidine Construction: A Phosphiteâ€Mediated Beckmannâ€Like Coupling of Oximes and <i>p</i> â€Toluenesulfonyl Azide. Angewandte Chemie - International Edition, 2013, 52, 11589-11593.	13.8	31
30	Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2. Chemical Communications, 2013, 49, 11527.	4.1	23
31	Hierarchically porous materials via assembly of nitrogen-rich polymer nanoparticles for efficient and selective CO2 capture. Journal of Materials Chemistry A, 2013, 1, 14862.	10.3	58
32	Cooperative Titanocene and Phosphine Catalysis: Accelerated C–X Activation for the Generation of Reactive Organometallics. Journal of Organic Chemistry, 2013, 78, 253-269.	3.2	37
33	Design, synthesis, and evaluation of curcumin-derived arylheptanoids for glioblastoma and neuroblastoma cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6874-6878.	2.2	19
34	Bifunctional Titanocene Catalysis in Multicomponent Couplings: A Convergent Assembly of β-Alkynyl Ketones. Organic Letters, 2013, 15, 2656-2659.	4.6	19
35	Relay Redox and Lewis Acid Catalysis in the Titanocene―Catalyzed Multicomponent Assembly of 1,5â€Enynes. Advanced Synthesis and Catalysis, 2013, 355, 1500-1504.	4.3	16
36	An Operationally Simple and Scalable Approach to Functionalized Ionic Liquids from Phosphonium and N-Heterocyclic Halide Salts. Synlett, 2013, 24, 1428-1432.	1.8	2

Brandon L Ashfeld

#	Article	IF	CITATIONS
37	Phosphineâ€Based Redox Catalysis in the Direct Traceless Staudinger Ligation of Carboxylic Acids and Azides. Angewandte Chemie - International Edition, 2012, 51, 12036-12040.	13.8	93
38	Positional chemoselectivity in the Zn(II)-mediated removal of phenol protecting groups. Tetrahedron Letters, 2012, 53, 5376-5379.	1.4	3
39	Titanocene-Catalyzed Multicomponent Coupling Approach to Diarylethynyl Methanes. Journal of the American Chemical Society, 2012, 134, 18217-18220.	13.7	34
40	Direct Acyl Substitution of Carboxylic Acids: A Chemoselective O―to Nâ€Acyl Migration in the Traceless Staudinger Ligation. Chemistry - A European Journal, 2012, 18, 14444-14453.	3.3	31
41	Aryl Aldehydes as Traceless Dielectrophiles in Bifunctional Titanocene-Catalyzed Propargylic C–X Activations. Organic Letters, 2011, 13, 5680-5683.	4.6	24
42	Synthesis of Phosphine-Ligated Zinc Acetylide Dimers: Enhanced Reactivity in Carbonyl Additions. Organometallics, 2011, 30, 5214-5221.	2.3	30
43	Generation of allyl Grignard reagents via titanocene-catalyzed activation of allyl halides. Tetrahedron Letters, 2010, 51, 2427-2430.	1.4	26
44	Titanocene-Catalyzed Conjugate Reduction of α,β-Unsaturated Carbonyl Derivatives. Organic Letters, 2010, 12, 44-47.	4.6	69
45	Organozinc Generation via the Titanium-Catalyzed Activation of Alkyl Halides. Organic Letters, 2009, 11, 5670-5673.	4.6	37
46	Coupling of Alkenes and Alkynes: Synthesis of the C1â^'C11 and C18â^'C28 Fragments of Miyakolide. Organic Letters, 2008, 10, 1893-1896.	4.6	25
47	Features and Applications of [Rh(CO) ₂ Cl] ₂ -Catalyzed Alkylations of Unsymmetrical Allylic Substrates. Journal of Organic Chemistry, 2007, 72, 9018-9031.	3.2	41
48	Enantioselective syntheses of tremulenediol A and tremulenolide A. Tetrahedron, 2006, 62, 10497-10506.	1.9	36
49	[Rh(CO)2Cl]2-Catalyzed Domino Reactions Involving Allylic Substitution and Subsequent Carbocyclization Reactions ChemInform, 2005, 36, no.	0.0	0
50	[Rh(CO)2Cl]2-Catalyzed Domino Reactions Involving Allylic Substitution and Subsequent Carbocyclization Reactions. Organic Letters, 2005, 7, 1661-1663.	4.6	45
51	Enantioselective Syntheses of Tremulenediol A and Tremulenolide A. Organic Letters, 2005, 7, 4535-4537.	4.6	63
52	Direct, Stereoselective Substitution in [Rh(CO)2Cl]2-Catalyzed Allylic Alkylations of Unsymmetrical Substrates ChemInform, 2004, 35, no.	0.0	0
53	Direct, Stereoselective Substitution in [Rh(CO)2Cl]2-Catalyzed Allylic Alkylations of Unsymmetrical Substrates. Organic Letters, 2004, 6, 1321-1324.	4.6	76