
Sowmya Viswanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A tool for evaluating novel osteoarthritis therapies using multivariate analyses of human cartilage-synovium explant co-culture. Osteoarthritis and Cartilage, 2022, 30, 147-159.	0.6	7
2	How the COVID-19 pandemic has affected rheumatology research. Nature Reviews Rheumatology, 2022, 18, 128-132.	3.5	0
3	Hybrid Core-Shell Polymer Scaffold for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2022, 23, 4533.	1.8	9
4	Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis and Cartilage, 2022, 30, 1050-1061.	0.6	16
5	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.3	45
6	Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 2021, 23, 1060-1063.	0.3	15
7	In-house abbreviated qualification of a real-time polymerase chain reaction method and strategies to amplify mycoplasma detection in human mesenchymal stromal cells. Cytotherapy, 2021, 23, 1036-1044.	0.3	1
8	Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Seminars in Cell and Developmental Biology, 2020, 101, 87-103.	2.3	31
9	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.3	35
10	Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Frontiers in Immunology, 2020, 11, 629726.	2.2	8
11	Current state of Health Canada regulation for cellular and gene therapy products: potential cures on the horizon. Cytotherapy, 2019, 21, 686-698.	0.3	17
12	Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 2019, 21, 1019-1024.	0.3	466
13	Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: a cohort study. Arthritis Research and Therapy, 2019, 21, 26.	1.6	63
14	Recommendations for Regulating the Environmental Risk of Shedding for Gene Therapy and Oncolytic Viruses in Canada. Frontiers in Medicine, 2019, 6, 58.	1.2	6
15	Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy, 2019, 21, 393-415.	0.3	23
16	Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Translational Medicine, 2019, 8, 746-757.	1.6	141
17	Iron nanoparticle-labeled murine mesenchymal stromal cells in an osteoarthritic model persists and suggests anti-inflammatory mechanism of action. PLoS ONE, 2019, 14, e0214107.	1.1	19
18	Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy, 2019, 21, 289-306.	0.3	107

#	Article	IF	CITATIONS
19	19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Scientific Reports, 2018, 8, 590.	1.6	42
20	Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vsÂlate-stage OA synovial fluid. Osteoarthritis and Cartilage, 2017, 25, 737-741.	0.6	20
21	Strategy for an abbreviated in-house qualification of a commercially available Rapid Microbiology Method (RMM) for canadian regulatory approval. Cytotherapy, 2017, 19, 1529-1536.	0.3	8
22	TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling. Stem Cells, 2017, 35, 265-275.	1.4	106
23	A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget, 2017, 8, 89256-89268.	0.8	127
24	OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells. PLoS ONE, 2017, 12, e0189131.	1.1	16
25	A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and <i>In Vitro</i> Chondrogenesis. Bone Marrow Research, 2016, 2016, 1-18.	1.7	21
26	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
27	A Systematic Study of the Effect of Different Molecular Weights of Hyaluronic Acid on Mesenchymal Stromal Cell-Mediated Immunomodulation. PLoS ONE, 2016, 11, e0147868.	1.1	30
28	Current practices and reform proposals for the regulation of advanced medicinal products in Canada. Regenerative Medicine, 2015, 10, 647-663.	0.8	14
29	Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. Journal of Heart and Lung Transplantation, 2015, 34, 1481-1488.	0.3	19
30	Regenerative Medicine Approaches for Treatment of Osteoarthritis. , 2015, , 235-255.		0
31	Bringing regenerative medicines to the clinic: the future for regulation and reimbursement. Regenerative Medicine, 2015, 10, 897-911.	0.8	41
32	Current Concepts. Sports Health, 2015, 7, 38-44.	1.3	61
33	Soliciting Strategies for Developing Cell-Based Reference Materials to Advance Mesenchymal Stromal Cell Research and Clinical Translation. Stem Cells and Development, 2014, 23, 1157-1167.	1.1	112
34	Donor Mesenchymal Stromal Cells (MSCs) Undergo Variable Cardiac Reprogramming in Vivo and Predominantly Co-Express Cardiac and Stromal Determinants after Experimental Acute Myocardial Infarction. Stem Cell Reviews and Reports, 2014, 10, 304-315.	5.6	15
35	Development and characterization of a new inbred transgenic rat strain expressing DsRed monomeric fluorescent protein. Transgenic Research, 2014, 23, 779-793.	1.3	3
36	Review of Patents and Commercial Opportunities Involving Mesenchymal Stromal Cells (MSCs) Therapies in Osteoarthritis. Recent Patents on Regenerative Medicine, 2014, 4, 1-15.	0.4	7

#	Article	IF	CITATIONS
37	Bench-to-Bedside Development of MSC Therapies: A Multidisciplinary Approach. , 2013, , 279-315.		0
38	Overcoming Challenges to Initiating Cell Therapy Clinical Trials in Rapidly Developing Countries: India as a Model. Stem Cells Translational Medicine, 2013, 2, 607-613.	1.6	20
39	Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model. Haematologica, 2012, 97, 1020-1028.	1.7	53
40	Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells and Development, 2012, 21, 2724-2752.	1.1	693
41	Undertaking Regenerative Medicine Studies with Blood Stem Cells. , 2012, , 1-7.		Ο
42	Review of Recent Clinical Developments and Patents for the Treatment of Autoimmune and Inflammatory Diseases by Mesenchymal Stromal Cells. Recent Patents on Regenerative Medicine, 2012, 1, 228-248.	0.4	0
43	Overcoming the challenges of conducting translational research in cell therapy. Frontiers of Medicine, 2011, 5, 333-335.	1.5	3
44	Clonal evolution of stem and differentiated cells can be predicted by integrating cell-intrinsic and -extrinsic parameters. Biotechnology and Applied Biochemistry, 2005, 42, 119.	1.4	16
45	Towards predictive models of stem cell fate. Cytotechnology, 2003, 41, 75-92.	0.7	48
46	Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotechnology and Bioengineering, 2003, 84, 505-517.	1.7	45
47	Ligand/Receptor Signaling Threshold (LIST) Model Accounts for gp130-Mediated Embryonic Stem Cell Self-Renewal Responses to LIF and HIL-6. Stem Cells. 2002. 20. 119-138.	1.4	85