Joachim R Krenn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonadiabatic Nano-optical Tunneling of Photoelectrons in Plasmonic Near-Fields. Nano Letters, 2022, 22, 2303-2308.	4.5	7
2	Fundamental Limit of Plasmonic Cathodoluminescence. Nano Letters, 2021, 21, 590-596.	4.5	15
3	Coupling Silver Iodide Emitters to Aluminum Plasmons. Journal of Physical Chemistry C, 2021, 125, 2519-2523.	1.5	1
4	Energy-resolved few-cycle nanoplasmonic photoemission dynamics. , 2021, , .		0
5	Near-Field-Induced Femtosecond Breakdown of Plasmonic Nanoparticles. Plasmonics, 2020, 15, 335-340.	1.8	14
6	The Role of Particle Size in the Dispersion Engineering of Plasmonic Arrays. Journal of Physical Chemistry C, 2020, 124, 2104-2112.	1.5	8
7	Core–Shell Nanocuboid Dimers with Nanometric Gaps. Journal of Physical Chemistry C, 2020, 124, 18690-18697.	1.5	3
8	Photoconductivity of Colloidal Quantum Dot Films in Plasmonic Nanogaps. Proceedings (mdpi), 2020, 56, 23.	0.2	0
9	Few-Femtosecond Plasmon Transients Probed with nm-Scale Sensitivity. , 2019, , .		0
10	How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics, 2018, 5, 861-866.	3.2	30
11	Plasmonic Dispersion Relations and Intensity Enhancement of Metal–Insulator–Metal Nanodisks. ACS Photonics, 2018, 5, 4823-4827.	3.2	25
12	Gray State Dynamics in the Blinking of Single Type I Colloidal Quantum Dots. Nano, 2018, 13, 1850039.	0.5	3
13	Measurement of Nanoplasmonic Field Enhancement with Ultrafast Photoemission. Nano Letters, 2017, 17, 1181-1186.	4.5	68
14	Tuning of the emission color of organic light emitting diodes via smartly designed aluminum plasmonics. , 2017, , .		0
15	3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography. Nano Letters, 2017, 17, 6773-6777.	4.5	31
16	Aluminum-nanodisc-induced collective lattice resonances: Controlling the light extraction in organic light emitting diodes. Applied Physics Letters, 2017, 111, 173301.	1.5	8
17	Spectrum image analysis tool – A flexible MATLAB solution to analyze EEL and CL spectrum images. Micron, 2017, 93, 43-51.	1.1	8
18	Measurement of nanoplasmonic field enhancement with ultrafast photoemission. , 2017, , .		1

#	Article	IF	CITATIONS
19	Adjusting the emission color of organic light-emitting diodes through aluminum nanodisc arrays. Optical Engineering, 2017, 56, 1.	0.5	6
20	Mapping the local particle plasmon sensitivity with a scanning probe. Nanoscale, 2016, 8, 16449-16454.	2.8	7
21	Gap plasmonics of silver nanocube dimers. Physical Review B, 2016, 93, .	1.1	40
22	Edge Mode Coupling within a Plasmonic Nanoparticle. Nano Letters, 2016, 16, 5152-5155.	4.5	15
23	Three dimensional sensitivity characterization of plasmonic nanorods for refractometric biosensors. Nanoscale, 2016, 8, 2974-2981.	2.8	9
24	Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes. Applied Physics Letters, 2015, 107, .	1.5	10
25	Plasmon modes of a silver thin film taper probed with STEM-EELS. Optics Letters, 2015, 40, 5670.	1.7	5
26	Imaging nanowire plasmon modes with two-photon polymerization. Applied Physics Letters, 2015, 106, .	1.5	19
27	Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonics Applications. ACS Photonics, 2015, 2, 1199-1208.	3.2	41
28	Fluorescence coupling to plasmonic nanoparticles. Proceedings of SPIE, 2015, , .	0.8	0
29	Local refractive index sensitivity of gold nanodisks. Optics Express, 2015, 23, 10293.	1.7	15
30	Probing plasmonic breathing modes optically. Applied Physics Letters, 2014, 105, 171103.	1.5	35
31	Nanostructured fibre tip for trapping of nanoparticles. , 2014, , .		2
32	Morphing a Plasmonic Nanodisk into a Nanotriangle. Nano Letters, 2014, 14, 4810-4815.	4.5	112
33	Near-field and SERS enhancement from rough plasmonic nanoparticles. Physical Review B, 2014, 89, .	1.1	35
34	Universal dispersion of surface plasmons in flat nanostructures. Nature Communications, 2014, 5, 3604.	5.8	96
35	Screen-printed polymer waveguides for integrated optics. Applied Physics B: Lasers and Optics, 2013, 111, 647-650.	1.1	2
36	Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires. Nano Letters, 2013, 13, 4257-4262.	4.5	35

#	Article	IF	CITATIONS
37	High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer. Organic Electronics, 2013, 14, 3070-3082.	1.4	30
38	Template-assisted deposition of CTAB-functionalized gold nanoparticles with nanoscale resolution. Journal of Colloid and Interface Science, 2013, 394, 237-242.	5.0	8
39	Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing. Nanotechnology, 2013, 24, 305501.	1.3	50
40	Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Letters, 2013, 13, 674-678.	4.5	238
41	Revisiting Surface-Enhanced Raman Scattering on Realistic Lithographic Gold Nanostripes. Journal of Physical Chemistry C, 2013, 117, 25650-25658.	1.5	41
42	Edge scattering of surface plasmons excited by scanning tunneling microscopy. Optics Express, 2013, 21, 13938.	1.7	26
43	High-resolution biosensor based on localized surface plasmons. Optics Express, 2012, 20, 672.	1.7	99
44	Detailed simulation of structural color generation inspired by the Morpho butterfly. Optics Express, 2012, 20, 21485.	1.7	38
45	Analysis of damping-induced phase flips of plasmonic nanowire modes. Optics Letters, 2012, 37, 746.	1.7	8
46	Interference of surface plasmon polaritons excited at hole pairs in thin gold films. Applied Physics Letters, 2012, 101, 201102.	1.5	14
47	Integrated waveguide sensor platform utilizing organic photodiodes. , 2012, , .		1
48	Femtosecond laser processing as a versatile tool for advanced solid state lighting sources: From efficacy enhancement to colour temperature control. Applied Surface Science, 2012, 258, 9213-9217.	3.1	5
49	Measurement and Reduction of Damping in Plasmonic Nanowires. Nano Letters, 2012, 12, 661-665.	4.5	83
50	Controlled addressing of quantum dots by nanowire plasmons. Applied Physics Letters, 2012, 100, 231102.	1.5	29
51	Dark Plasmonic Breathing Modes in Silver Nanodisks. Nano Letters, 2012, 12, 5780-5783.	4.5	198
52	On the Adjustment of the Color Temperature of White Light-Emitting Diodes by Femtosecond Laser Patterning. IEEE Photonics Technology Letters, 2011, 23, 124-126.	1.3	5
53	Waveguide-integrated SPR sensing on an all-organic platform. Proceedings of SPIE, 2011, , .	0.8	2
54	Design and Optical Properties of Active Polymer-Coated Plasmonic Nanostructures. Journal of Physical Chemistry Letters, 2011, 2, 926-931.	2.1	58

#	Article	IF	CITATIONS
55	The Impact of Light Scattering on the Radiant Flux of Phosphor-Converted High Power White Light-Emitting Diodes. Journal of Lightwave Technology, 2011, 29, 2285-2291.	2.7	61
56	Influence of surface roughness on the optical properties of plasmonic nanoparticles. Physical Review B, 2011, 83, .	1.1	77
57	Local refractive index sensitivity of plasmonic nanoparticles. Optics Express, 2011, 19, 9213.	1.7	77
58	Surface plasmon leakage radiation microscopy at the diffraction limit. Optics Express, 2011, 19, 25749.	1.7	74
59	Integrated optical attenuator based on mechanical deformation of an elastomer layer. Applied Physics B: Lasers and Optics, 2011, 104, 931-934.	1.1	10
60	Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness. BioNanoScience, 2011, 1, 128-135.	1.5	65
61	Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 710-714.	0.8	26
62	Numerical investigation of the local mass transfer on flat plates in laminar flow. Chemical Engineering and Processing: Process Intensification, 2011, 50, 503-508.	1.8	2
63	Visualization of surface deformations during thin film drying using a Digital-Image-Correlation method. Chemical Engineering and Processing: Process Intensification, 2011, 50, 569-573.	1.8	6
64	Spatially resolved drying kinetics of multi-component solution cast films for organic electronics. Chemical Engineering and Processing: Process Intensification, 2011, 50, 509-515.	1.8	26
65	Optimization of postgrowth electron-beam curing for focused electron-beam-induced Pt deposits. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	54
66	ORGANIC PHOTODIODES ON PRINTED ITO COATINGS. International Journal of High Speed Electronics and Systems, 2011, 20, 787-799.	0.3	2
67	Plasmonic modes of gold nanoâ€particle arrays on thin gold films. Physica Status Solidi - Rapid Research Letters, 2010, 4, 256-258.	1.2	14
68	Fabrication of n―and pâ€Type Organic Thin Film Transistors with Minimized Gate Overlaps by Selfâ€Aligned Nanoimprinting. Advanced Materials, 2010, 22, 5115-5119.	11.1	51
69	Fully printed, flexible, large area organic optothermal sensors for human-machine-interfaces. Procedia Engineering, 2010, 5, 725-729.	1.2	8
70	High-performing submicron organic thin-film transistors fabricated by residue-free embossing. Organic Electronics, 2010, 11, 552-557.	1.4	32
71	A comprehensive study on the parameters effecting color conversion in phosphor converted white light emitting diodes. , 2010, , .		10
72	Superresolution Moiré Mapping of Particle Plasmon Modes. Physical Review Letters, 2010, 104, 143901.	2.9	29

#	Article	IF	CITATIONS
73	Light coupling for integrated optical waveguide-based sensors. Proceedings of SPIE, 2010, , .	0.8	1
74	The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources. Journal of Lightwave Technology, 2010, , .	2.7	38
75	Electron-Energy-Loss Spectra of Plasmonic Nanoparticles. Physical Review Letters, 2009, 103, 106801.	2.9	165
76	Tunable Electrochemical Switch of the Optical Properties of Metallic Nanoparticles. ECS Transactions, 2009, 25, 89-100.	0.3	0
77	On the Requirements for Achieving Angular Homogeneity in Phosphor Converted High Power Flip-Chip Light-Emitting Diodes. Japanese Journal of Applied Physics, 2009, 48, 070208.	0.8	8
78	The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1181-1188.	1.9	69
79	Surface Texturing of High-Power Flip-Chip LEDs by Femtosecond Laser Direct Structuring. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1250-1256.	1.9	12
80	Residue-free room temperature UV-nanoimprinting of submicron organic thin film transistors. Organic Electronics, 2009, 10, 1466-1472.	1.4	47
81	Organic photodiodes on flexible substrates. Thin Solid Films, 2009, 518, 1214-1217.	0.8	12
82	Active Plasmonic Devices with Anisotropic Optical Response: A Step Toward Active Polarizer. Nano Letters, 2009, 9, 2144-2148.	4.5	68
83	Organic light-emitting diodes as surface plasmon emitters. , 2009, , .		Ο
84	Volume structuring of high power LED encapsulates byÂfemtosecond laser direct writing. Applied Physics A: Materials Science and Processing, 2008, 93, 421-427.	1.1	9
85	Surface enhanced Raman spectroscopy of the liquid crystal 8CB using chip structures. Physica Status Solidi (B): Basic Research, 2008, 245, 2193-2196.	0.7	Ο
86	Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Current Applied Physics, 2008, 8, 467-470.	1.1	87
87	Leakage radiation microscopy of surface plasmon polaritons. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 220-229.	1.7	231
88	Three-dimensional SU-8 sub-micrometer structuring by electron beam lithography. Microelectronic Engineering, 2008, 85, 1639-1641.	1.1	18
89	Organic optoelectronic device fabrication using standard UV photolithography. Physica Status Solidi - Rapid Research Letters, 2008, 2, 16-18.	1.2	9
90	Spectrally selective organic photodiodes. Physica Status Solidi - Rapid Research Letters, 2008, 2, 178-180.	1.2	24

#	Article	IF	CITATIONS
91	Monolithically integrated organic waveguide photodiode. Physica Status Solidi - Rapid Research Letters, 2008, 2, 266-268.	1.2	6
92	Organic plasmon-emitting diode. Nature Photonics, 2008, 2, 684-687.	15.6	178
93	Probing surface plasmon fields by far-field Raman imaging. Journal of Microscopy, 2008, 229, 189-196.	0.8	13
94	Introduction to the Issue on Surface Plasmon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1393-1394.	1.9	1
95	Multipolar surface plasmon peaks on gold nanotriangles. Journal of Chemical Physics, 2008, 128, 094702.	1.2	79
96	Tunable Electrochemical Switch of the Optical Properties of Metallic Nanoparticles. ACS Nano, 2008, 2, 728-732.	7.3	102
97	Förster-Type Resonant Energy Transfer Influenced by Metal Nanoparticles. Nano Letters, 2008, 8, 4128-4133.	4.5	117
98	Improvement of light extraction from high-power flip-chip light-emitting diodes by femtosecond laser direct structuring of the sapphire backside surface. Journal of Applied Physics, 2008, 104, 074507.	1.1	16
99	Experimental Verification of the SERS Electromagnetic Model beyond the <i>E</i> ⁴ Approximation: Polarization Effects. Journal of Physical Chemistry C, 2008, 112, 8117-8121.	1.5	115
100	Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Optics Express, 2008, 16, 3420.	1.7	72
101	Coupling dielectric waveguide modes to surface plasmon polaritons. Optics Express, 2008, 16, 10455.	1.7	53
102	Rapid prototyping of micro-optics on organic light emitting diodes and organic photo cells by means of two-photon 3D lithography and nano-imprint lithography. , 2008, , .		4
103	Response to "Comment on â€~Surface plasmon coupled electroluminescent emission'―[Appl. Phys. Lett. 93, 266101 (2008)]. Applied Physics Letters, 2008, 93, 266102.	1.5	1
104	Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. New Journal of Physics, 2008, 10, 033035.	1.2	30
105	Surface plasmon coupled electroluminescent emission. Applied Physics Letters, 2008, 92, .	1.5	39
106	Effects of damping on surface-plasmon pulse propagation and refraction. Physical Review B, 2008, 78, .	1.1	15
107	Novel approaches for light control of high power LEDs. Proceedings of SPIE, 2008, , .	0.8	0

Novel solutions toward improved high power white LED light source. , 2008, , .

1

#	Article	IF	CITATIONS
109	Comparing the influence of gold nanorods and -discs on the spontaneous decay rate of Eu–chelate dye. Journal of Optics, 2007, 9, S437-S442.	1.5	4
110	Comment on "Far-Field Optical Microscopy with a Nanometer-Scale Resolution Based on the In-Plane Image Magnification by Surface Plasmon Polaritons― Physical Review Letters, 2007, 98, 209703; discussion 209704.	2.9	11
111	Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Physical Review B, 2007, 75, .	1.1	48
112	Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers. Applied Physics Letters, 2007, 91, 081111.	1.5	82
113	Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. Journal of Optics, 2007, 9, S366-S371.	1.5	15
114	Surface plasmon waveguiding and detection: dielectric-loaded metal surfaces. , 2007, , .		0
115	Surface plasmon polariton microscope with parabolic reflectors. Optics Letters, 2007, 32, 2414.	1.7	15
116	Analysis of the angular acceptance of surface plasmon Bragg mirrors. Optics Letters, 2007, 32, 2704.	1.7	25
117	Rapid prototyping of optical components for surface plasmon polaritons. Optics Express, 2007, 15, 4205.	1.7	41
118	Optical absorption of torus-shaped metal nanoparticles in the visible range. Physical Review B, 2007, 76, .	1.1	24
119	Plasmonic Crystal Demultiplexer and Multiports. Nano Letters, 2007, 7, 1697-1700.	4.5	121
120	Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures. Physical Review B, 2007, 75, .	1.1	80
121	Surface plasmon mediated near-field imaging and optical addressing in nanoscience. Micron, 2007, 38, 427-437.	1.1	24
122	Efficient unidirectional nanoslit couplers for surface plasmons. Nature Physics, 2007, 3, 324-328.	6.5	461
123	Sexithiophene films on ordered and disordered TiO2(110) surfaces: Electronic, structural and morphological properties. Surface Science, 2007, 601, 178-187.	0.8	64
124	Dielectric stripes on gold as surface plasmon waveguides. Applied Physics Letters, 2006, 88, 094104.	1.5	244
125	Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory. Physical Review B, 2006, 73, .	1.1	67
126	Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors. Physical Review B, 2006, 73, .	1.1	91

#	Article	IF	CITATIONS
127	Heteroepitaxy of Organicâ^'Organic Nanostructures. Nano Letters, 2006, 6, 1207-1212.	4.5	82
128	Surface plasmon interference fringes in back-reflection. Europhysics Letters, 2006, 74, 693-698.	0.7	20
129	Splitting of a surface plasmon polariton beam by chains of nanoparticles. Applied Physics B: Lasers and Optics, 2006, 84, 29-34.	1.1	42
130	Electrically actuated elastomers for electro–optical modulators. Applied Physics B: Lasers and Optics, 2006, 85, 7-10.	1.1	33
131	Electron beam lithography, a helpful tool for nanooptics. Microelectronic Engineering, 2006, 83, 1464-1467.	1.1	47
132	Far-Field Raman Imaging of Short-Wavelength Particle Plasmons on Gold Nanorods. Plasmonics, 2006, 1, 35-39.	1.8	25
133	Surface Plasmon Polariton Mach–Zehnder Interferometer and Oscillation Fringes. Plasmonics, 2006, 1, 141-145.	1.8	35
134	How to erase surface plasmon fringes. Applied Physics Letters, 2006, 89, 091117.	1.5	98
135	Momentum transfer for momentum transfer-free which-path experiments. Physical Review A, 2006, 73, .	1.0	5
136	Organic diodes as monolithically integrated surface plasmon polariton detectors. Applied Physics Letters, 2006, 89, 161101.	1.5	51
137	Raman scattering images and spectra of gold ring arrays. Physical Review B, 2006, 73, .	1.1	35
138	Heisenberg optical near-field microscope. Physical Review A, 2006, 73, .	1.0	6
139	The optical near-field of gold nanoparticle chains. Optics Communications, 2005, 248, 543-549.	1.0	67
140	Surface plasmon propagation in an elliptical corral. Applied Physics Letters, 2005, 86, 074104.	1.5	61
141	Evidence of multipolar excitations in surface enhanced Raman scattering. Physical Review B, 2005, 71, .	1.1	115
142	Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles. Europhysics Letters, 2005, 69, 538-543.	0.7	32
143	Conducting Polymer Electrochemical Switching as an Easy Means for Designing Active Plasmonic Devices. Journal of the American Chemical Society, 2005, 127, 16022-16023.	6.6	122
144	Dielectric optical elements for surface plasmons. Optics Letters, 2005, 30, 893.	1.7	161

#	Article	IF	CITATIONS
145	Quantitative analysis of surface plasmon interaction with silver nanoparticles. Optics Letters, 2005, 30, 1524.	1.7	110
146	Silver Nanowires as Surface Plasmon Resonators. Physical Review Letters, 2005, 95, 257403.	2.9	950
147	Imaging Surface Plasmon of Gold Nanoparticle Arrays by Far-Field Raman Scattering. Nano Letters, 2005, 5, 253-258.	4.5	57
148	Grating-induced plasmon mode in gold nanoparticle arrays. Journal of Chemical Physics, 2005, 123, 221103.	1.2	109
149	Surface enhanced Raman scattering arising from multipolar plasmon excitation. Journal of Chemical Physics, 2005, 122, 011102.	1.2	73
150	Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Physical Review B, 2005, 72, .	1.1	127
151	Sexithiophene films on clean and oxidized Si(111) surfaces: Growth and electronic structure. Journal of Applied Physics, 2004, 96, 2716-2724.	1.1	41
152	Oriented Sexiphenyl Single Crystal Nanoneedles on TiO2 (110). Advanced Materials, 2004, 16, 2159-2162.	11.1	89
153	Structure and morphology of sexiphenyl thin films grown on aluminium (111). Organic Electronics, 2004, 5, 45-51.	1.4	29
154	Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. Journal of Chemical Physics, 2004, 120, 7141-7146.	1.2	125
155	Surface plasmon polariton–based optical beam profiler. Optics Letters, 2004, 29, 1408.	1.7	21
156	Surface plasmon polaritons in metal stripes and wires. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 739-756.	1.6	118
157	Optical properties of tailor-made 1D and 2D noble metal particle arrays. , 2004, 5339, 644.		0
158	Optical properties of two interacting gold nanoparticles. Optics Communications, 2003, 220, 137-141.	1.0	1,352
159	Surface plasmon micro―and nanoâ€optics. Journal of Microscopy, 2003, 209, 167-172.	0.8	88
160	Watching energy transfer. Nature Materials, 2003, 2, 210-211.	13.3	152
161	Efficiency of local light-plasmon coupling. Applied Physics Letters, 2003, 83, 3665-3667.	1.5	89
162	Optical resonances in periodic surface arrays of metallic patches. Applied Optics, 2003, 42, 5714.	2.1	37

#	Article	IF	CITATIONS
163	Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 2003, 68, .	1.1	266
164	Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003, 82, 3095-3097.	1.5	394
165	Plasmon modes in elongated gold nanoparticles. , 2003, 4829, 483.		Ο
166	Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Physical Review B, 2002, 66, .	1.1	139
167	Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Physical Review B, 2002, 65, .	1.1	347
168	Fluorescence imaging of surface plasmon fields. Applied Physics Letters, 2002, 80, 404-406.	1.5	210
169	Two-dimensional optics with surface plasmon polaritons. Applied Physics Letters, 2002, 81, 1762-1764.	1.5	567
170	Non–diffraction-limited light transport by gold nanowires. Europhysics Letters, 2002, 60, 663-669.	0.7	229
171	Optical properties of Ag and Au nanowire gratings. Journal of Applied Physics, 2001, 90, 3825-3830.	1.1	233
172	Surface plasmon propagation in microscale metal stripes. Applied Physics Letters, 2001, 79, 51-53.	1.5	352
173	Near-field observation of surface plasmon polariton propagation on thin metal stripes. Physical Review B, 2001, 64, .	1.1	269
174	Near-field optical response of a two-dimensional grating of gold nanoparticles. Physical Review B, 2001, 63, .	1.1	33
175	Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays. Applied Physics B: Lasers and Optics, 2001, 73, 373-377.	1.1	44
176	Do Mie plasmons have a longer lifetime on resonance than off resonance?. Applied Physics B: Lasers and Optics, 2001, 73, 305-310.	1.1	82
177	Light field propagation by metal micro- and nanostructures. Journal of Microscopy, 2001, 202, 122-128.	0.8	55
178	Optical addressing at the subwavelength scale. Physical Review E, 2000, 62, 7381-7388.	0.8	35
179	Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Applied Physics Letters, 2000, 77, 2949-2951.	1.5	346
180	Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters, 2000, 84, 4721-4724.	2.9	556

#	Article	IF	CITATIONS
181	Spectrally coded optical data storage by metal nanoparticles. Optics Letters, 2000, 25, 563.	1.7	249
182	Design of multipolar plasmon excitations in silver nanoparticles. Applied Physics Letters, 2000, 77, 3379-3381.	1.5	208
183	Particle-plasmon decay-time determination by measuring the optical near-field's autocorrelation: influence of inhomogeneous line broadening. Applied Physics B: Lasers and Optics, 1999, 69, 223-227.	1.1	55
184	Resonant and Off-Resonant Light-Driven Plasmons in Metal Nanoparticles Studied by Femtosecond-Resolution Third-Harmonic Generation. Physical Review Letters, 1999, 83, 4421-4424.	2.9	191
185	Direct observation of localized surface plasmon coupling. Physical Review B, 1999, 60, 5029-5033.	1.1	97
186	Near-field optical properties of localized plasmons around lithographically designed nanostructures. Journal of Applied Physics, 1999, 86, 2576-2583.	1.1	25
187	Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles. Physical Review Letters, 1999, 82, 2590-2593.	2.9	571
188	Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Physical Review B, 1999, 60, 9061-9068.	1,1	241
189	Application to dielectric, metallic, and magnetic samples of a transmission mode scanning near field optical microscope with normal force distance regulation on bent optical fibers. Review of Scientific Instruments, 1999, 70, 4587-4594.	0.6	7
190	Sliding plastics on ice: fluorescence spectroscopic studies on interfacial water layers in the μm thickness regime. Applied Physics B: Lasers and Optics, 1998, 66, 599-602.	1.1	19
191	Electromagnetic energy transport via linear chains of silver nanoparticles. Optics Letters, 1998, 23, 1331.	1.7	1,004
192	Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures. Optics Communications, 1997, 137, 46-50.	1.0	56
193	Thickness determination of a water film on dye-doped ice by fluorescence spectroscopy. Applied Optics, 1996, 35, 198.	2.1	3
194	Investigation of localized surface plasmons with the photon scanning tunneling microscope. Applied Physics A: Materials Science and Processing, 1995, 61, 541-545.	1.1	38
195	Photoconductivity of PbS Quantum Dot Films in Plasmonic Nanogaps. , 0, , .		0