Antoine Cléry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574144/publications.pdf

Version: 2024-02-01

21 papers 1,825 citations

16 h-index 713332 21 g-index

25 all docs

25 docs citations

25 times ranked 3097 citing authors

#	Article	IF	CITATIONS
1	40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Research, 2022, 50, 6300-6312.	6.5	8
2	RNAâ€PROTACs: Degraders of RNAâ€Binding Proteins. Angewandte Chemie - International Edition, 2021, 60, 3163-3169.	7.2	95
3	RNAâ€PROTACs: Degraders of RNAâ€Binding Proteins. Angewandte Chemie, 2021, 133, 3200-3206.	1.6	12
4	An <i>in vitro</i> reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Research, 2021, 49, e63-e63.	6.5	12
5	Inosine Substitutions in RNA Activate Latent G-Quadruplexes. Journal of the American Chemical Society, 2021, 143, 15120-15130.	6.6	12
6	Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nature Communications, 2021, 12, 428.	5.8	37
7	Structural basis of a small molecule targeting RNA for a specific splicing correction. Nature Chemical Biology, 2019, 15, 1191-1198.	3.9	89
8	Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nature Communications, 2019, 10, 1590.	5. 8	70
9	The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular Cell, 2019, 73, 490-504.e6.	4.5	151
10	Structural Flexibility Enables Alternative Maturation, ARGONAUTE Sorting and Activities of miR168, a Global Gene Silencing Regulator in Plants. Molecular Plant, 2018, 11, 1008-1023.	3.9	43
11	Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development through Its Interaction with an FtsH12-FtsHi Protease Complex. Plant Cell, 2018, 30, 1745-1769.	3.1	55
12	Control of the polyamine biosynthesis pathway by G2-quadruplexes. ELife, 2018, 7, .	2.8	20
13	switchSENSE: A new technology to study protein-RNA interactions. Methods, 2017, 118-119, 137-145.	1.9	29
14	Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Research, 2017, 45, 8046-8063.	6.5	28
15	Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nature Communications, 2017, 8, 1476.	5. 8	155
16	Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. ELife, 2017, 6, .	2.8	72
17	Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Research, 2016, 44, 6452-6470.	6.5	48
18	One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. Methods in Enzymology, 2015, 558, 235-278.	0.4	72

Antoine Cléry

#	Article	IF	CITATIONS
19	SRSF1-Regulated Alternative Splicing in Breast Cancer. Molecular Cell, 2015, 60, 105-117.	4.5	290
20	Single-Stranded Nucleic Acid Recognition: Is There a Code after All?. Structure, 2013, 21, 4-6.	1.6	6
21	RNA recognition motifs: boring? Not quite. Current Opinion in Structural Biology, 2008, 18, 290-298.	2.6	520