
Andrew S Flies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4573906/publications.pdf Version: 2024-02-01

ANDDEW S FLIES

#	Article	IF	CITATIONS
1	B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood, 2008, 111, 3635-3643.	0.6	438
2	Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood, 2007, 110, 180-185.	0.6	209
3	Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood, 2007, 110, 186-192.	0.6	169
4	B7-H3 Enhances Tumor Immunity In Vivo by Costimulating Rapid Clonal Expansion of Antigen-Specific CD8+ Cytolytic T Cells. Journal of Immunology, 2004, 173, 5445-5450.	0.4	163
5	CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood, 2007, 109, 4882-4889.	0.6	77
6	B7-H4–deficient mice display augmented neutrophil-mediated innate immunity. Blood, 2009, 113, 1759-1767.	0.6	72
7	Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood, 2007, 109, 4097-4104.	0.6	66
8	Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. Journal of Clinical Investigation, 2006, 116, 1045-1051.	3.9	62
9	Extreme Competence: Keystone Hosts of Infections. Trends in Ecology and Evolution, 2019, 34, 303-314.	4.2	46
10	PD-L1 Is Not Constitutively Expressed on Tasmanian Devil Facial Tumor Cells but Is Strongly Upregulated in Response to IFN-γ and Can Be Expressed in the Tumor Microenvironment. Frontiers in Immunology, 2016, 7, 581.	2.2	41
11	B7-H3 Promotes Pathogenesis of Autoimmune Disease and Inflammation by Regulating the Activity of Different T Cell Subsets. PLoS ONE, 2015, 10, e0130126.	1.1	40
12	Socioecological predictors of immune defences in wildÂspotted hyenas. Functional Ecology, 2016, 30, 1549-1557.	1.7	33
13	An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Review of Vaccines, 2020, 19, 1-10.	2.0	33
14	Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
15	Markedly Elevated Antibody Responses in Wild versus Captive Spotted Hyenas Show that Environmental and Ecological Factors Are Important Modulators of Immunity. PLoS ONE, 2015, 10, e0137679.	1.1	26
16	Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. Journal of Vector Ecology, 2014, 39, 48-55.	0.5	24
17	A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers. Science Advances, 2020, 6, .	4.7	22

18 Rewilding immunology. Science, 2020, 369, 37-38.

6.0 22

(

ANDREW S FLIES

#	Article	IF	CITATIONS
19	Regional Comparison of Mosquito Bloodmeals in South Australia: Implications for Ross River Virus Ecology. Journal of Medical Entomology, 2016, 53, 902-910.	0.9	20
20	Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Frontiers in Immunology, 2017, 8, 513.	2.2	19
21	Inducible IFN-Î ³ Expression for MHC-I Upregulation in Devil Facial Tumor Cells. Frontiers in Immunology, 2018, 9, 3117.	2.2	17
22	NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1973-1991.	1.2	14
23	Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cellular and Molecular Life Sciences, 2020, 77, 2507-2525.	2.4	12
24	Development of a hyena immunology toolbox. Veterinary Immunology and Immunopathology, 2012, 145, 110-119.	0.5	11
25	Two Decades of the Impact of Tasmanian Devil Facial Tumor Disease. Integrative and Comparative Biology, 2018, 58, 1043-1054.	0.9	10
26	Generation and Testing of Fluorescent Adaptable Simple Theranostic (FAST) Proteins. Bio-protocol, 2020, 10, e3696.	0.2	8
27	Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. Developmental and Comparative Immunology, 2021, 115, 103882.	1.0	7
28	Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. Wildlife Research, 2021, 48, 701-712.	0.7	7
29	Characterization of toll-like receptors 1–10 in spotted hyenas. Veterinary Research Communications, 2014, 38, 165-170.	0.6	6
30	Editorial: Wild Immunology—The Answers Are Out There. Frontiers in Immunology, 2019, 10, 126.	2.2	3
31	Papillomavirus-associated Cutaneous Papillomas in a Population of Wild Spotted Hyenas (Crocuta) Tj ETQq1 1 0.	.784314 rg 0.3	gBT /Overlact
32	Cytokines: Signalling Improved Immunotherapy?. Current Oncology Reports, 2021, 23, 103.	1.8	0