
Christine L Mummery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4573654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
2	Differentiation of Human Embryonic Stem Cells to Cardiomyocytes. Circulation, 2003, 107, 2733-2740.	1.6	1,091
3	Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007, 25, 803-816.	9.4	983
4	MicroRNAs in the Human Heart. Circulation, 2007, 116, 258-267.	1.6	852
5	Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes. Circulation Research, 2012, 111, 344-358.	2.0	641
6	Activin Receptor-like Kinase (ALK)1 Is an Antagonistic Mediator of Lateral TGFβ/ALK5 Signaling. Molecular Cell, 2003, 12, 817-828.	4.5	631
7	Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO Journal, 2004, 23, 4018-4028.	3.5	592
8	Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453, 322-329.	13.7	523
9	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
10	Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development. Molecular and Cellular Biology, 2006, 26, 5015-5022.	1.1	496
11	Organs-on-chips: into the next decade. Nature Reviews Drug Discovery, 2021, 20, 345-361.	21.5	459
12	Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. Journal of Cell Science, 2004, 117, 1269-1280.	1.2	446
13	Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self-Renewal via $\hat{I}\pm V\hat{I}^25$ Integrin. Stem Cells, 2008, 26, 2257-2265.	1.4	389
14	NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 2011, 8, 1037-1040.	9.0	384
15	Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 2007, 1, 9-24.	0.3	383
16	Induced pluripotent stem cells: the new patient?. Nature Reviews Molecular Cell Biology, 2012, 13, 713-726.	16.1	377
17	Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research, 2010, 4, 107-116.	0.3	340
18	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	5.2	337

#	Article	IF	CITATIONS
19	Increased Cardiomyocyte Differentiation from Human Embryonic Stem Cells in Serum-Free Cultures. Stem Cells, 2005, 23, 772-780.	1.4	324
20	Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nature Medicine, 2010, 16, 420-428.	15.2	312
21	Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 2017, 482, 323-328.	1.0	312
22	Atrialâ€like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrialâ€selective pharmacology. EMBO Molecular Medicine, 2015, 7, 394-410.	3.3	310
23	Phosphorylation Dynamics during Early Differentiation of Human Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 214-226.	5.2	301
24	Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols, 2014, 9, 1514-1531.	5.5	281
25	Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease. Circulation, 2012, 125, 3079-3091.	1.6	245
26	Human embryonic stem cells: research, ethics and policy. Human Reproduction, 2003, 18, 672-682.	0.4	236
27	MUSCLEMOTION. Circulation Research, 2018, 122, e5-e16.	2.0	235
28	Isl1Cre reveals a common Bmp pathway in heart and limb development. Development (Cambridge), 2006, 133, 1575-1585.	1.2	234
29	Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 2008, 76, 357-370.	1.0	233
30	Human Embryonic Stem Cell–Derived Cardiomyocytes and Cardiac Repair in Rodents. Circulation Research, 2008, 102, 1008-1010.	2.0	233
31	Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem?. Stem Cells and Development, 2015, 24, 1035-1052.	1.1	229
32	Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells. Journal of Neuroscience, 2008, 28, 434-446.	1.7	228
33	Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development (Cambridge), 2017, 144, 1008-1017.	1.2	216
34	TGF-β1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 2008, 1, 138-149.	0.3	214
35	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
36	Stalk Cell Phenotype Depends on Integration of Notch and Smad1/5 Signaling Cascades. Developmental Cell, 2012, 22, 501-514.	3.1	198

#	Article	IF	CITATIONS
37	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
38	Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 2008, 76, 958-970.	1.0	193
39	Personalised organs-on-chips: functional testing for precision medicine. Lab on A Chip, 2019, 19, 198-205.	3.1	183
40	BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes and Development, 2004, 18, 1838-1849.	2.7	180
41	Genome-Wide Transcriptional Profiling of Human Embryonic Stem Cells Differentiating to Cardiomyocytes. Stem Cells, 2006, 24, 1956-1967.	1.4	179
42	Functional maturation of human pluripotent stem cell derived cardiomyocytes inÂvitro – Correlation between contraction force andÂelectrophysiology. Biomaterials, 2015, 51, 138-150.	5.7	176
43	Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO Journal, 2013, 32, 3161-3175.	3.5	174
44	Origins and Fates of Cardiovascular Progenitor Cells. Cell, 2008, 132, 537-543.	13.5	172
45	Functionality of Endothelial Cells and Pericytes From Human Pluripotent Stem Cells Demonstrated in Cultured Vascular Plexus and Zebrafish Xenografts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 177-186.	1.1	172
46	Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Frontiers in Physiology, 2012, 3, 346.	1.3	168
47	Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function. Cell Reports, 2015, 13, 733-745.	2.9	167
48	Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nature Biotechnology, 2015, 33, 970-979.	9.4	165
49	Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Human Molecular Genetics, 2007, 16, 1253-1268.	1.4	162
50	Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovascular Research, 2009, 83, 527-535.	1.8	158
51	Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: Disease mechanisms and pharmacological rescue. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5383-92.	3.3	153
52	Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development (Cambridge), 2004, 131, 6237-6247.	1.2	141
53	Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development (Cambridge), 2015, 142, 3231-8.	1.2	139
54	Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab on A Chip, 2013, 13, 3562.	3.1	135

#	Article	IF	CITATIONS
55	An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nature Methods, 2007, 4, 677-678.	9.0	132
56	Expression of TGF-βs and Their Receptors during Implantation and Organogenesis of the Mouse Embryo. Developmental Biology, 1994, 166, 716-728.	0.9	124
57	Endoglin Has a Crucial Role in Blood Cell–Mediated Vascular Repair. Circulation, 2006, 114, 2288-2297.	1.6	124
58	Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovascular Research, 2003, 58, 324-335.	1.8	122
59	Complex Tissue and Disease Modeling using hiPSCs. Cell Stem Cell, 2016, 18, 309-321.	5.2	121
60	A Quest for Human and Mouse Embryonic Stem Cell-specific Proteins. Molecular and Cellular Proteomics, 2006, 5, 1261-1273.	2.5	120
61	KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas. Stem Cell Reports, 2015, 4, 1112-1124.	2.3	118
62	Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends in Molecular Medicine, 2011, 17, 475-484.	3.5	117
63	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	1.1	116
64	Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Developmental Dynamics, 1997, 209, 418-430.	0.8	115
65	Conversion of Mature Human β-Cells Into Glucagon-Producing α-Cells. Diabetes, 2013, 62, 2471-2480.	0.3	115
66	Insulin Redirects Differentiation from Cardiogenic Mesoderm and Endoderm to Neuroectoderm in Differentiating Human Embryonic Stem Cells. Stem Cells, 2008, 26, 724-733.	1.4	113
67	Plasma Membrane Proteomics of Human Embryonic Stem Cells and Human Embryonal Carcinoma Cells. Journal of Proteome Research, 2008, 7, 2936-2951.	1.8	112
68	Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mechanisms of Development, 1995, 52, 109-123.	1.7	111
69	Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Advanced Drug Delivery Reviews, 2019, 140, 68-77.	6.6	109
70	Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation, 1991, 46, 51-60.	1.0	106
71	Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice. Journal of Cell Science, 2007, 120, 4269-4277.	1.2	104
72	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	6.0	104

#	Article	IF	CITATIONS
73	Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?. British Journal of Pharmacology, 2017, 174, 3749-3765.	2.7	104
74	Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Research, 2007, 1, 45-60.	0.3	102
75	Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle. Journal of Cellular Physiology, 1981, 107, 75-83.	2.0	101
76	Hereditary hemorrhagic telangiectasia: an update on transforming growth factor ? signaling in vasculogenesis and angiogenesis. Cardiovascular Research, 2003, 58, 20-31.	1.8	101
77	Variants of the α ₆ β ₁ Laminin Receptor in Early Murine Development: Distribution, Molecular Cloning and Chromosomal Localization of the Mouse Integrin α ₆ Subunit. Cell Adhesion and Communication, 1993, 1, 33-53.	1.7	99
78	Identification of Cell Surface Proteins for Antibody-Based Selection of Human Embryonic Stem Cell-Derived Cardiomyocytes. Journal of Proteome Research, 2010, 9, 1610-1618.	1.8	99
79	<i><scp>TECRL</scp></i> , a new lifeâ€threatening inherited arrhythmia gene associated with overlapping clinical features of both <scp>LQTS</scp> and <scp>CPVT</scp> . EMBO Molecular Medicine, 2016, 8, 1390-1408.	3.3	98
80	Myocardial Tissue Engineering: In Vitro Models. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014076-a014076.	2.9	97
81	Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction. Developmental Dynamics, 2004, 231, 542-550.	0.8	95
82	Improved genetic manipulation of human embryonic stem cells. Nature Methods, 2008, 5, 389-392.	9.0	95
83	Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Bone, 2005, 36, 803-811.	1.4	94
84	Transplantation of cells for cardiac repair. Journal of the American College of Cardiology, 2003, 41, 711-717.	1.2	93
85	Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15182-15192.	3.3	93
86	Challenges in Using Stem Cells for Cardiac Repair. Science Translational Medicine, 2010, 2, 27ps17.	5.8	92
87	Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Research, 2007, 17, 1731-1742.	2.4	90
88	Prospects for pluripotent stem cellâ€derived cardiomyocytes in cardiac cell therapy and as disease models. Journal of Cellular Biochemistry, 2009, 107, 592-599.	1.2	86
89	Patterning the heart, a template for human cardiomyocyte development. Developmental Dynamics, 2006, 235, 1994-2002.	0.8	84
90	Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. DMM Disease Models and Mechanisms, 2017, 10, 1039-1059.	1.2	83

#	Article	IF	CITATIONS
91	Identification of Novel Regulators Associated With Early-Phase Osteoblast Differentiation. Journal of Bone and Mineral Research, 2004, 19, 947-958.	3.1	82
92	Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. Journal of Cell Science, 2004, 117, 4653-4663.	1.2	81
93	Human Organs-on-Chips for Virology. Trends in Microbiology, 2020, 28, 934-946.	3.5	81
94	Comprehensive Microarray Analysis of Bone Morphogenetic Protein 2-Induced Osteoblast Differentiation Resulting in the Identification of Novel Markers for Bone Development. Journal of Bone and Mineral Research, 2002, 17, 2106-2118.	3.1	79
95	Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nature Protocols, 2007, 2, 2551-2567.	5.5	79
96	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	3.5	79
97	Pluripotent Stem Cell Models of Human Heart Disease. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014027-a014027.	2.9	79
98	Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends in Pharmacological Sciences, 2009, 30, 536-545.	4.0	78
99	Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovascular Research, 2015, 105, 424-438.	1.8	77
100	A new <scp>hERG</scp> allosteric modulator rescues genetic and drugâ€induced longâ€ <scp>QT</scp> syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Molecular Medicine, 2016, 8, 1065-1081.	3.3	77
101	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	5.8	77
102	BMP4 Promotes EMT and Mesodermal Commitment in Human Embryonic Stem Cells via SLUG and MSX2. Stem Cells, 2014, 32, 636-648.	1.4	74
103	BMP signalling differentially regulates distinct haematopoietic stem cell types. Nature Communications, 2015, 6, 8040.	5.8	74
104	Concise Review: Measuring Physiological Responses of Human Pluripotent Stem Cell Derived Cardiomyocytes to Drugs and Disease. Stem Cells, 2016, 34, 2008-2015.	1.4	74
105	Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nature Protocols, 2008, 3, 1435-1443.	5.5	73
106	Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Research, 2009, 3, 106-112.	0.3	71
107	Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives. Stem Cell Reports, 2019, 12, 1282-1297.	2.3	71
108	Heart repair and stem cells. Journal of Physiology, 2006, 577, 467-478.	1.3	70

#	Article	IF	CITATIONS
109	Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis, 2008, 46, 335-346.	0.8	70
110	Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. Journal of Cellular Physiology, 2011, 226, 3340-3348.	2.0	67
111	Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva. Stem Cell Reports, 2015, 5, 963-970.	2.3	67
112	Endoglin-Mediated Vascular Remodeling: Mechanisms Underlying Hereditary Hemorrhagic Telangiectasia. Trends in Cardiovascular Medicine, 2008, 18, 25-32.	2.3	66
113	Dual Reporter <i>MESP1mCherry/w-NKX2-5eGFP/w</i> hESCs Enable Studying Early Human Cardiac Differentiation. Stem Cells, 2015, 33, 56-67.	1.4	65
114	Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts. PLoS ONE, 2011, 6, e24164.	1.1	64
115	Aggregation and cell cycle dependent retinoic acid receptor mRNA expression in P19 embryonal carcinoma cells. Mechanisms of Development, 1992, 36, 165-172.	1.7	63
116	Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochemical Journal, 2011, 434, 25-35.	1.7	63
117	SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 2014, 13, 172-179.	0.3	63
118	Functions of the superfamily in human embryonic stem cells. Apmis, 2005, 113, 773-789.	0.9	62
119	Nitric Oxide Signaling in Oxytocin-Mediated Cardiomyogenesis. Stem Cells, 2007, 25, 679-688.	1.4	62
120	Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. European Heart Journal, 2017, 38, ehw189.	1.0	62
121	Activation of the Canonical Bone Morphogenetic Protein (BMP) Pathway during Lung Morphogenesis and Adult Lung Tissue Repair. PLoS ONE, 2012, 7, e41460.	1.1	60
122	Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. Journal of Cellular and Molecular Medicine, 2014, 18, 1509-1518.	1.6	60
123	PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function. Stem Cell Reports, 2013, 1, 560-574.	2.3	59
124	What if stem cells turn into embryos in a dish?. Nature Methods, 2015, 12, 917-919.	9.0	59
125	ENDOGLIN Is Dispensable for Vasculogenesis, but Required for Vascular Endothelial Growth Factor-Induced Angiogenesis. PLoS ONE, 2014, 9, e86273.	1.1	59
126	Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cellular and Molecular Life Sciences, 2010, 67, 277-290.	2.4	58

#	Article	IF	CITATIONS
127	Human embryonic stem cells: Genetic manipulation on the way to cardiac cell therapies. Reproductive Toxicology, 2005, 20, 377-391.	1.3	55
128	Induced Pluripotent Stem Cells — A Cautionary Note. New England Journal of Medicine, 2011, 364, 2160-2162.	13.9	55
129	Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells. Stem Cell Reports, 2017, 9, 1754-1764.	2.3	55
130	Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1642-1656.	2.3	55
131	Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 2018, 497, 1135-1141.	1.0	55
132	Cell cycle analysis during retinoic acid induced differentiation of a human embryonal carcinoma-derived cell line. Cell Differentiation, 1987, 20, 153-160.	1.3	54
133	Two novel type II receptors mediate BMP signalling and are required to establish left–right asymmetry in zebrafish. Developmental Biology, 2008, 315, 55-71.	0.9	54
134	Perspectives on the Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Biomedical Research. Stem Cell Reports, 2018, 11, 1306-1311.	2.3	54
135	Cardiomyocyte differentiation from embryonic and adult stem cells. Current Opinion in Biotechnology, 2005, 16, 498-502.	3.3	53
136	Altered primordial germ cell migration in the absence of transforming growth factor β signaling via ALK5. Developmental Biology, 2005, 284, 194-203.	0.9	53
137	CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. Journal of Cell Science, 2010, 123, 1141-1150.	1.2	53
138	A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Scientific Reports, 2016, 6, 19386.	1.6	53
139	DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nature Communications, 2017, 8, 908.	5.8	53
140	Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nature Protocols, 2021, 16, 2213-2256.	5.5	53
141	Expression patterns of laminin receptor splice variants α6Aβ1 and α6Bβ1 suggest different roles in mouse development. Developmental Dynamics, 1995, 204, 240-258.	0.8	52
142	Modulation of functional and optimal (Na+-K+)ATPase activity during the cell cycle of neuroblastoma cells. Journal of Cellular Physiology, 1981, 107, 1-9.	2.0	51
143	Two receptor classes for epidermal growth factor on pheochromocytoma cells, distinguishable by temperature, lectins, and tumor promoters. Journal of Cellular Physiology, 1985, 123, 347-352.	2.0	51
144	Preferential expression of cellular retinoic acid binding protein in a subpopulation of neural cells in the developing mouse embryo. Differentiation, 1989, 40, 99-105.	1.0	51

#	Article	IF	CITATIONS
145	Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications, 2019, 10, 4325.	5.8	51
146	Blinded, Multicenter Evaluation of Drug-induced Changes in Contractility Using Human-induced Pluripotent Stem Cell-derived Cardiomyocytes. Toxicological Sciences, 2020, 176, 103-123.	1.4	51
147	Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods in Molecular Biology, 2014, 1353, 163-180.	0.4	48
148	Generation of a floxed allele of the mouse endoglin gene. Genesis, 2007, 45, 391-395.	0.8	47
149	A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics, 2008, 8, 4036-4053.	1.3	47
150	Scalable microphysiological system to model three-dimensional blood vessels. APL Bioengineering, 2019, 3, 026105.	3.3	47
151	Solace for the broken-hearted?. Nature, 2005, 433, 585-587.	13.7	45
152	Pluripotent stem cell derived cardiovascular progenitors – A developmental perspective. Developmental Biology, 2015, 400, 169-179.	0.9	45
153	A COUP-TFII Human Embryonic Stem Cell Reporter Line to Identify and Select Atrial Cardiomyocytes. Stem Cell Reports, 2017, 9, 1765-1779.	2.3	44
154	Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013, 86, 30-37.	1.0	43
155	Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Molecular Reproduction and Development, 1995, 40, 444-454.	1.0	42
156	A cardiomyocyte show of force: A fluorescent alpha-actinin reporter line sheds light on human cardiomyocyte contractility versus substrate stiffness. Journal of Molecular and Cellular Cardiology, 2020, 141, 54-64.	0.9	42
157	Cardiac Tissues From Stem Cells. Circulation Research, 2021, 128, 775-801.	2.0	42
158	Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells. Stem Cell Reports, 2021, 16, 2159-2168.	2.3	42
159	SOST expression is restricted to the great arteries during embryonic and neonatal cardiovascular development. Developmental Dynamics, 2007, 236, 606-612.	0.8	41
160	A P19Cl6 GFP reporter line to quantify cardiomyocyte differentiation of stem cells International Journal of Developmental Biology, 2004, 48, 47-55.	0.3	41
161	Building blocks for a European Organ-on-Chip roadmap. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 481-492.	0.9	41
162	Epidermal growth factor receptor expression during morphological differentiation of pheochromocytoma cells, induced by nerve growth factor or dibutyryl cyclic AMP. Journal of Cellular Physiology, 1987, 131, 409-417.	2.0	38

#	Article	IF	CITATIONS
163	Cytostretch, an Organ-on-Chip Platform. Micromachines, 2016, 7, 120.	1.4	38
164	Distribution of phosphorylated Smad2 identifies target tissues of TGFβ ligands in mouse development. Gene Expression Patterns, 2003, 3, 355-360.	0.3	37
165	Embryonic stem cell proteomics. Expert Review of Proteomics, 2006, 3, 427-437.	1.3	37
166	Sox2 Transduction Enhances Cardiovascular Repair Capacity of Blood-Derived Mesoangioblasts. Circulation Research, 2010, 106, 1290-1302.	2.0	37
167	BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells ExÂVivo. Stem Cell Reports, 2016, 6, 383-395.	2.3	37
168	Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovascular Research, 2010, 85, 494-502.	1.8	35
169	Differentiation-Defective Human Induced Pluripotent Stem Cells RevealÂStrengths and Limitations of the Teratoma Assay and InÂVitro Pluripotency Assays. Stem Cell Reports, 2017, 8, 1340-1353.	2.3	35
170	In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Scientific Reports, 2020, 10, 5499.	1.6	35
171	Modulations of NA+ transport during the cell cycle of neuroblastoma cells. Journal of Cellular Physiology, 1982, 112, 27-34.	2.0	34
172	Identification and characterization of polypeptide growth factors secreted by murine embryonal carcinoma cells. Developmental Biology, 1989, 133, 272-283.	0.9	34
173	Progenitor cells for cardiac repair. Seminars in Cell and Developmental Biology, 2007, 18, 153-160.	2.3	34
174	Proteomics and human embryonic stem cells. Stem Cell Research, 2008, 1, 169-182.	0.3	34
175	The composition and differentiation potential of the duodenal intraepithelial innate lymphocyte compartment is altered in coeliac disease. Gut, 2016, 65, 1269-1278.	6.1	34
176	Regenerative medicine funding policies in Europe and The Netherlands. Npj Regenerative Medicine, 2017, 2, 1.	2.5	34
177	Stage-specific appearance of the mouse antigen TEC-3 in normal and nuclear transfer bovine embryos: Re-expression after nuclear transfer. Molecular Reproduction and Development, 1994, 37, 27-33.	1.0	33
178	Cardiomyocytes derived from stem cells. Annals of Medicine, 2005, 37, 499-512.	1.5	32
179	Cardiac safety pharmacology: from human ether-a-gogo related gene channel block towards induced pluripotent stem cell based disease models. Expert Opinion on Drug Safety, 2012, 11, 285-298.	1.0	31
180	Inherited heart disease – what can we expect from the second decade of human i <scp>PS</scp> cell research?. FEBS Letters, 2016, 590, 2482-2493.	1.3	31

#	Article	IF	CITATIONS
181	Inhibition of ROCK improves survival of human embryonic stem cell–derived cardiomyocytes after dissociation. Annals of the New York Academy of Sciences, 2010, 1188, 52-57.	1.8	30
182	Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives. Biomacromolecules, 2018, 19, 1091-1099.	2.6	30
183	Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Research, 2020, 43, 101698.	0.3	30
184	The role of TGF-β production in growth inhibition of breast-tumor cells by progestins. International Journal of Cancer, 1995, 61, 80-86.	2.3	29
185	Mouse embryonic stem cells with aberrant transforming growth factor Î ² signalling exhibit impaired differentiation in vitro and in vivo. Differentiation, 1998, 63, 101-113.	1.0	29
186	Knock-in of integrin $\hat{l}^2 1D$ affects primary but not secondary myogenesis in mice. Development (Cambridge), 2003, 130, 1659-1671.	1.2	29
187	Feeder-Free Monolayer Cultures of Human Embryonic Stem Cells Express an Epithelial Plasma Membrane Protein Profile. Stem Cells, 2008, 26, 2777-2781.	1.4	29
188	Model Systems for Cardiovascular Regenerative Biology. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014019-a014019.	2.9	29
189	Concise review: Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells, 2019, 38, 174-186.	1.4	29
190	Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure. Biochemical and Biophysical Research Communications, 2015, 467, 998-1005.	1.0	28
191	Readthrough-Promoting Drugs Gentamicin and PTC124 Fail to Rescue Na _v 1.5 Function of Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes Carrying Nonsense Mutations in the Sodium Channel Gene <i>SCN5A</i> . Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	28
192	Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes: Fit for Purpose or Forever Elusive?. Annual Review of Pharmacology and Toxicology, 2020, 60, 529-551.	4.2	28
193	Engineered models of the human heart: Directions and challenges. Stem Cell Reports, 2021, 16, 2049-2057.	2.3	28
194	Proteomic Analysis of Stem Cell Differentiation and Early Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008177-a008177.	2.3	27
195	BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 85-94.	2.3	27
196	Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs). Journal of Visualized Experiments, 2017, , .	0.2	27
197	A Miniaturized EHT Platform for Accurate Measurements of Tissue Contractile Properties. Journal of Microelectromechanical Systems, 2020, 29, 881-887.	1.7	27
198	Decreased Expression of Vascular Endothelial Growth Factor Receptor 1 Contributes to the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Circulation, 2018, 138, 2698-2712.	1.6	26

#	Article	IF	CITATIONS
199	Activation of both transforming growth factor-Î ² and bone morphogenetic protein signalling pathways upon traumatic brain injury restrains pro-inflammatory and boosts tissue reparatory responses of reactive astrocytes and microglia. Brain Communications, 2019, 1, fcz028.	1.5	26
200	Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports, 2021, 16, 385-397.	2.3	25
201	Human stem cell models for predictive cardiac safety pharmacology. Stem Cell Research, 2010, 4, 155-156.	0.3	23
202	Isogenic Sets of hiPSC-CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced Arrhythmias. Stem Cell Reports, 2020, 15, 1127-1139.	2.3	23
203	Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 707-717.	1.1	22
204	The MicroRNA-371 Family as Plasma Biomarkers for Monitoring Undifferentiated and Potentially Malignant Human Pluripotent Stem Cells in Teratoma Assays. Stem Cell Reports, 2018, 11, 1493-1505.	2.3	22
205	Z-disc protein CHAPb induces cardiomyopathy and contractile dysfunction in the postnatal heart. PLoS ONE, 2017, 12, e0189139.	1.1	22
206	Direct visualization of Smad1/5/8â€mediated transcriptional activity identifies podocytes and collecting ducts as major targets of BMP signalling in healthy and diseased kidneys. Journal of Pathology, 2011, 224, 121-132.	2.1	21
207	Coâ€Differentiation of Human Pluripotent Stem Cellsâ€Derived Cardiomyocytes and Endothelial Cells from Cardiac Mesoderm Provides a Threeâ€Dimensional Model of Cardiac Microtissue. Current Protocols in Human Genetics, 2017, 95, 21.9.1-21.9.22.	3.5	21
208	Differentially regulated production of platelet-derived growth factor and of transforming growth factor beta by a human teratocarcinoma cell line. Differentiation, 1988, 38, 203-210.	1.0	20
209	Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reproductive BioMedicine Online, 2005, 11, 476-485.	1.1	20
210	Smooth muscle diversity from human pluripotent cells. Nature Biotechnology, 2012, 30, 152-154.	9.4	20
211	Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014050-a014050.	2.9	20
212	Generation and Functional Characterization of Monocytes and Macrophages Derived from Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2020, 52, e108.	3.0	20
213	Identification of the type-B receptor for platelet-derived growth factor in human embryonal carcinoma cells. Experimental Cell Research, 1990, 186, 324-331.	1.2	19
214	Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.	1.7	19
215	Genetically Engineered Mesenchymal Stem Cells Influence Gene Expression in Donor Cardiomyocytes and the Recipient Heart. Journal of Stem Cell Research & Therapy, 2012, 01, .	0.3	19
216	Visceral endoderm induces specification of cardiomyocytes in mice. Stem Cell Research, 2009, 3, 170-178.	0.3	18

#	Article	IF	CITATIONS
217	From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize. Stem Cell Reports, 2013, 1, 5-17.	2.3	18
218	Characterization of 42K+ and 86Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells. Biochimica Et Biophysica Acta - Biomembranes, 1981, 643, 89-100.	1.4	17
219	The Time Is Right: Proteome Biology of Stem Cells. Cell Stem Cell, 2008, 2, 215-217.	5.2	17
220	Cartilage from human-induced pluripotent stem cells: comparison with neo-cartilage from chondrocytes and bone marrow mesenchymal stromal cells. Cell and Tissue Research, 2021, 386, 309-320.	1.5	17
221	Expression of the α6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation, 1999, 64, 173.	1.0	17
222	Organization of non-muscle myosin during early murine embryonic differentiation. Differentiation, 1992, 50, 47-56.	1.0	16
223	Sorting cardiomyocytes: a simple solution after all?. Nature Methods, 2010, 7, 40-42.	9.0	15
224	Welcome to Stem Cell Reports. Stem Cell Reports, 2013, 1, 1-2.	2.3	15
225	Closing the Mitochondrial Permeability Transition Pore in hiPSC-Derived Endothelial Cells Induces Glycocalyx Formation and Functional Maturation. Stem Cell Reports, 2019, 13, 803-816.	2.3	15
226	Quantitative Analysis of Intracellular Ca2+ Release and Contraction in hiPSC-Derived Vascular Smooth Muscle Cells. Stem Cell Reports, 2019, 12, 647-656.	2.3	15
227	Mentorship in Science: Response to AlShebli etÂal., Nature Communications 2020. Stem Cell Reports, 2021, 16, 1-2.	2.3	15
228	Getting to the Heart of the Matter: Direct Reprogramming to Cardiomyocytes. Cell Stem Cell, 2010, 7, 139-141.	5.2	14
229	Is heart regeneration on the right track?. Nature Medicine, 2013, 19, 412-413.	15.2	14
230	Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vascular Cell, 2014, 6, 22.	0.2	14
231	Quantification of Muscle Contraction <i>In Vitro</i> and <i>In Vivo</i> Using MUSCLEMOTION Software: From Stem Cellâ€Đerived Cardiomyocytes to Zebrafish and Human Hearts. Current Protocols in Human Genetics, 2018, 99, e67.	3.5	14
232	Proteome biology of stem cells. Stem Cell Research, 2007, 1, 7-8.	0.3	13
233	Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research, 2014, 327, 297-306.	1.2	13
234	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	1.8	13

#	Article	IF	CITATIONS
235	Maturation of hiPSC-derived cardiomyocytes promotes adult alternative splicing of SCN5A and reveals changes in sodium current associated with cardiac arrhythmia. Cardiovascular Research, 2023, 119, 167-182.	1.8	13
236	Characterization of the epidermal-dermal junction in hiPSC-derived skin organoids. Stem Cell Reports, 2022, 17, 1279-1288.	2.3	13
237	Proteome Biology of Stem Cells. Molecular and Cellular Proteomics, 2008, 7, 204-205.	2.5	12
238	Mature cells can be rejuvenated. Nature, 2012, 492, 56-56.	13.7	12
239	Human teratocarcinoma cells express functional insulin-like growth factor I receptors. Experimental Cell Research, 1989, 184, 427-439.	1.2	11
240	Cardiomyocytes from human embryonic stem cells: more than heart repair alone. BioEssays, 2007, 29, 572-579.	1.2	11
241	The cancer's gone, but did chemotherapy damage your heart?. Nature Reviews Cardiology, 2016, 13, 383-384.	6.1	11
242	Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Micromachines, 2022, 13, 49.	1.4	11
243	Transforming growth factor- \hat{l}^2 and its receptor are differentially regulated in human embryonal carcinoma cells. Differentiation, 1989, 41, 245-253.	1.0	10
244	Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction. Cardiovascular Research, 2020, 116, 545-553.	1.8	10
245	Survey of Neuropeptide Gene Expression in Tumor Cell Lines. Pathobiology, 1992, 60, 127-135.	1.9	9
246	Cardiomyocyte reprogramming and the new age of cellular alchemy. Journal of Molecular and Cellular Cardiology, 2012, 53, 311-313.	0.9	9
247	Quantifying Ca2+ signaling and contraction in vascular pericytes and smooth muscle cells. Biochemical and Biophysical Research Communications, 2019, 513, 112-118.	1.0	9
248	Genetic Manipulation of Human Embryonic Stem Cells in Serum and Feeder-Free Media. Methods in Molecular Biology, 2009, 584, 413-423.	0.4	9
249	Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. International Journal of Developmental Biology, 2011, 55, 649-655.	0.3	8
250	Fabrication and Characterization of an Upside-Down Carbon Nanotube Microelectrode Array. IEEE Sensors Journal, 2016, 16, 8685-8691.	2.4	8
251	Shedding New Light on the Mechanism Underlying Stem Cell Therapy for the Heart. Molecular Therapy, 2011, 19, 1186-1188.	3.7	7
252	Advantages of the avian model for human ovarian cancer. Molecular and Clinical Oncology, 2015, 3, 1191-1198.	0.4	7

#	Article	IF	CITATIONS
253	The Promise and Potential of "Organs-on-Chips―as Preclinical Models. Applied in Vitro Toxicology, 2015, 1, 235-242.	0.6	7
254	Vascular Tumor Recapitulated in Endothelial Cells from hiPSCs Engineered to Express the SERPINE1-FOSB Translocation. Cell Reports Medicine, 2020, 1, 100153.	3.3	7
255	Generation and genetic repair of two human induced pluripotent cell lines from patients with Epidermolysis Bullosa simplex and dilated cardiomyopathy associated with a heterozygous mutation in the translation initiation codon of KLHL24. Stem Cell Research, 2021, 57, 102582.	0.3	7
256	Regulation of intracellular pH during the G1/S-phase transition of the neuroblastoma cell cycle. Experimental Cell Research, 1988, 174, 521-524.	1.2	6
257	Bone morphogenetic proteins and retinoic acid induce human endogenous retrovirus HERV-K expression in NT2D1 human embryonal carcinoma cells. Development Growth and Differentiation, 2000, 42, 407-411.	0.6	6
258	Spotlight on stem cells?makes old hearts fresh. Cardiovascular Research, 2003, 58, 241-245.	1.8	6
259	Human stem cells shape the future of cardiac regeneration research. International Journal of Cardiology, 2004, 95, S20-S22.	0.8	6
260	Tbx6 is a determinant of cardiac and neural cell fate decisions in multipotent P19CL6 cells. Differentiation, 2012, 84, 176-184.	1.0	6
261	The avian embryo to study development of the cardiac conduction system. Differentiation, 2016, 91, 90-103.	1.0	6
262	CCN2 reduction mediates protective effects of BMP7 treatment in obstructive nephropathy. Journal of Cell Communication and Signaling, 2017, 11, 39-48.	1.8	6
263	Microfluidic Assay for the Assessment of Leukocyte Adhesion to Human Induced Pluripotent Stem Cell-derived Endothelial Cells (hiPSC-ECs). Journal of Visualized Experiments, 2018, , .	0.2	6
264	Reprogramming Urineâ€Derived Cells Using Commercially Available Selfâ€Replicative RNA and a Single Electroporation. Current Protocols in Stem Cell Biology, 2020, 55, e124.	3.0	6
265	Targeting the Kv11.1 (hERG) channel with allosteric modulators. Synthesis and biological evaluation of three novel series of LUF7346 derivatives. European Journal of Medicinal Chemistry, 2021, 212, 113033.	2.6	6
266	The Linkage Phase of the Polymorphism KCNH2-K897T Influences the Electrophysiological Phenotype in hiPSC Models of LQT2. Frontiers in Physiology, 2021, 12, 755642.	1.3	6
267	Regulation of growth and differentiation in early development: Of mice and models. Reproductive Toxicology, 1993, 7, 145-154.	1.3	5
268	New Perspectives on Regeneration of the Heart. Circulation Research, 2011, 109, 828-829.	2.0	5
269	Differentiation in Early Development. , 2013, , 139-154.		5

13.7 5

#	Article	IF	CITATIONS
271	Cell Replacement Therapies: Is It Time to Reprogram?. Human Gene Therapy, 2014, 25, 866-874.	1.4	5
272	SnapShot: Key Advances in hiPSC Disease Modeling. Cell Stem Cell, 2016, 18, 422.	5.2	5
273	Generation and genetic repair of 2 iPSC clones from a patient bearing a heterozygous c.1120del18 mutation in the ACVRL1 gene leading to Hereditary Hemorrhagic Telangiectasia (HHT) type 2. Stem Cell Research, 2020, 46, 101786.	0.3	5
274	Thresholds of Endoglin Expression in Endothelial Cells Explains Vascular Etiology in Hereditary Hemorrhagic Telangiectasia Type 1. International Journal of Molecular Sciences, 2021, 22, 8948.	1.8	5
275	New guidelines for embryo and stem cell research. Nature Reviews Molecular Cell Biology, 2021, 22, 773-774.	16.1	5
276	Software Tool for Automatic Quantification of Sarcomere Length and Organization in Fixed and Live 2D and 3D Muscle Cell Cultures <i>In Vitro</i> . Current Protocols, 2022, 2, .	1.3	5
277	Reply to Christ et al.: LQT1 and JLNS phenotypes in hiPSC-derived cardiomyocytes are due to KCNQ1 mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1969-E1969.	3.3	4
278	Voices of biotech. Nature Biotechnology, 2016, 34, 270-275.	9.4	4
279	Perspectives for Future Use of Cardiac Microtissues from Human Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4605-4609.	2.6	4
280	Microphysiological stem cell models of the human heart. Materials Today Bio, 2022, 14, 100259.	2.6	4
281	Mutation in the CCAL1 locus accounts for bidirectional process of human subchondral bone turnover and cartilage mineralization. Rheumatology, 2022, 62, 360-372.	0.9	4
282	Genetic Selection of Cardiomyocytes from Human Embryonic Stem Cells. Molecular Therapy, 2007, 15, 1908-1909.	3.7	3
283	Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis, 2008, 46, spcone-spcone.	0.8	3
284	Differentiation in Early Development. , 2014, , 121-139.		3
285	What Endothelial Cells from Patient iPSCs Can Tell Us about Aortic Valve Disease. Cell Stem Cell, 2015, 16, 455-457.	5.2	3
286	CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2021, , 531-557.	0.4	3
287	Optogenetic Reporters Delivered as mRNA Facilitate Repeatable Action Potential and Calcium Handling Assessment in Human iPSC-Derived Cardiomyocytes. Stem Cells, 2022, 40, 655-668.	1.4	3
288	Toward Human Models of Cardiorenal Syndrome in vitro. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	3

#	Article	IF	CITATIONS
289	Heart defects recapitulated in human cardioids. Cell Research, 2021, 31, 947-948.	5.7	2
290	Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reproductive Toxicology, 2022, 112, 36-50.	1.3	2
291	Differentiation in Early Development. , 2004, , 143-156.		1
292	Differentiation in Early Development. , 2009, , 117-129.		1
293	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
294	Current controversies in prenatal diagnosis 1: is stem cell therapy ready for human fetuses?. Prenatal Diagnosis, 2011, 31, 228-230.	1.1	1
295	Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. , 2012, , 413-431.		1
296	A Case for Crowd Sourcing in Stem Cell Research. Stem Cells Translational Medicine, 2014, 3, 1259-1261.	1.6	1
297	Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in the Evaluation of Cardiotoxic Potential of Drugs. , 2018, , 173-194.		1
298	Lymphoblast-derived hiPS cell lines generated from four individuals of a family of genetically unrelated parents and their female monozygotic twins. Stem Cell Research, 2019, 41, 101654.	0.3	1
299	Generation of two human induced pluripotent stem cell lines, LUMCi020-A and LUMCi021-A, from two patients with Catecholaminergic Polymorphic Ventricular Tachycardia carrying heterozygous mutations in the RYR2 gene. Stem Cell Research, 2020, 45, 101764.	0.3	1
300	Generation of three human induced pluripotent stem cell lines, LUMCi024-A, LUMCi025-A, and LUMCi026-A, from two patients with combined oxidative phosphorylation deficiency 8 and a related control. Stem Cell Research, 2021, 53, 102374.	0.3	1
301	Assessment of Functional Competence of Endothelial Cells from Human Pluripotent Stem Cells in Zebrafish Embryos. Methods in Molecular Biology, 2014, 1213, 107-119.	0.4	1
302	Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?. , 2017, 174, 3749.		1
303	The EHA Research Roadmap: Hematopoietic Stem Cells and Allotransplantation. HemaSphere, 2022, 6, e0714.	1.2	1
304	Stem Cells and Cardiomyocytes. , 2006, , 133-155.		0
305	Part A: Directed Differentiation of Human Embryonic Stem Cells into Cardiomyocytes. , 0, , 213-228.		0

Cardiomyocyte Differentiation in Human ES Cells. , 0, , 93-106.

#	Article	IF	CITATIONS
307	Differentiation of Human Embryonic Stem Cells to Cardiomyocytes. , 2010, , 87-112.		0
308	Toward Stem Cell Therapy. , 2002, , 107-122.		0
309	Human Embryonic Stem Cells. Series in Medical Physics and Biomedical Engineering, 2011, , 1-30.	0.1	0