Ian W Hamley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4573401/publications.pdf

Version: 2024-02-01

451 papers

27,035 citations

9428 76 h-index 139 g-index

489 all docs 489 docs citations

489 times ranked 23518 citing authors

#	Article	IF	Citations
1	Methods for Small-Angle Scattering Measurements on Peptiplexes of DNA with Cell-Penetrating Peptides. Methods in Molecular Biology, 2022, 2383, 181-196.	0.4	2
2	Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein. ACS Nano, 2022, 16, 1857-1867.	7.3	22
3	Diffuse scattering from lamellar structures. Soft Matter, 2022, 18, 711-721.	1.2	6
4	Peptides for Vaccine Development. ACS Applied Bio Materials, 2022, 5, 905-944.	2.3	26
5	Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. Langmuir, 2022, 38, 3434-3445.	1.6	9
6	Design of a multipurpose sample cell holder for the Diamond Light Source high-throughput SAXS beamline B21. Journal of Synchrotron Radiation, 2021, 28, 318-321.	1.0	12
7	Benzene tricarboxamide derivatives with lipid and ethylene glycol chains self-assemble into distinct nanostructures driven by molecular packing. Chemical Communications, 2021, 57, 8360-8363.	2.2	4
8	Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules, 2021, 22, 1835-1855.	2.6	41
9	Self-Assembly of Angiotensin-Converting Enzyme Inhibitors Captopril and Lisinopril and Their Crystal Structures. Langmuir, 2021, 37, 9170-9178.	1.6	2
10	Lipopeptides for Vaccine Development. Bioconjugate Chemistry, 2021, 32, 1472-1490.	1.8	28
11	The effect of chiral end groups on the assembly of supramolecular polyurethanes. Polymer Chemistry, 2021, 12, 4488-4500.	1.9	6
12	Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter, 2021, 17, 3096-3104.	1.2	13
13	Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Progress in Polymer Science, 2021, 123, 101469.	11.8	39
14	Nanostructured dimethacrylate-based photopolymerizable systems by modification with diblock copolymers. Polymer, 2021, 237, 124360.	1.8	2
15	Model self-assembling arginine-based tripeptides show selective activity against <i>Pseudomonas</i> bacteria. Chemical Communications, 2020, 56, 615-618.	2.2	14
16	Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb ²⁺ and Cd ²⁺ lons from Wastewater and Oil Spill Recovery. Langmuir, 2020, 36, 12942-12953.	1.6	56
17	Amyloid Formation by Short Peptides in the Presence of Dipalmitoylphosphatidylcholine Membranes. Langmuir, 2020, 36, 14793-14801.	1.6	10
18	Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chemical Communications, 2020, 56, 11977-11980.	2.2	10

#	Article	IF	Citations
19	Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Frontiers in Chemistry, 2020, 8, 416.	1.8	17
20	Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic Ordering, and Catalysts in Aldol Reactions. Langmuir, 2020, 36, 2767-2774.	1.6	19
21	Self-Assembly of Minimal Peptoid Sequences. ACS Macro Letters, 2020, 9, 494-499.	2.3	21
22	Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS Applied Materials & Lipopeptide. ACS Applied Materials & Lipopeptide. ACS Applied Materials & Lipopeptide.	4.0	14
23	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
24	The aging effect on the enhancement of thermal stability, mechanical stiffness and fluorescence properties of histidine-appended naphthalenediimide based two-component hydrogels. Soft Matter, 2020, 16, 10106-10114.	1.2	15
25	Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. Journal of Materials Chemistry B, 2020, 8, 2495-2507.	2.9	30
26	Selective Antibacterial Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides. ACS Applied Bio Materials, 2020, 3, 1165-1175.	2.3	40
27	Self-assembled gold nanoparticles and amphiphile peptides: a colorimetric probe for copper(ii) ion detection. Dalton Transactions, 2020, 49, 16226-16237.	1.6	5
28	Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. ACS Applied Materials & Interfaces, 2020, 12, 22661-22672.	4.0	21
29	Polymorphism of asymmetric catalysts based on amphiphilic lipopeptides in solution. Soft Matter, 2020, 16, 4615-4624.	1.2	6
30	Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the <i>Trojan </i> peptide <i> Penetratin </i> Soft Matter, 2020, 16, 4746-4755.	1.2	17
31	Introduction to peptide soft materials. Soft Matter, 2020, 16, 9998-10000.	1.2	2
32	Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. Langmuir, 2019, 35, 1302-1311.	1.6	20
33	Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Applied Materials & Interfaces, 2019, 11, 33573-33580.	4.0	42
34	Fluoride-responsive debond on demand adhesives: Manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures. European Polymer Journal, 2019, 119, 260-271.	2.6	24
35	Unravelling the role of amino acid sequence order in the assembly and function of the amyloid- \hat{l}^2 core. Chemical Communications, 2019, 55, 8595-8598.	2.2	14
36	Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS Applied Bio Materials, 2019, 2, 3639-3647.	2.3	15

3

#	Article	IF	Citations
37	A Selfâ€Assembled Peptideâ€Appended Naphthalene Diimide: A Fluorescent Switch for Sensing Acid and Base Vapors. ChemPlusChem, 2019, 84, 1673-1680.	1.3	14
38	Nanoscopic Structure of Complexes Formed between DNA and the Cell-Penetrating Peptide Penetratin. Journal of Physical Chemistry B, 2019, 123, 8861-8871.	1.2	18
39	Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS Applied Bio Materials, 2019, 2, 5235-5244.	2.3	43
40	β <i>â€</i> sheet assembly in amyloidogenic glutamic acid nanostructures: Insights from Xâ€ray scattering and infrared nanospectroscopy. Journal of Peptide Science, 2019, 25, e3170.	0.8	11
41	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	2.3	30
42	Crystallization and lamellar nanosheet formation of an aromatic dipeptoid. Chemical Communications, 2019, 55, 5867-5869.	2.2	17
43	Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Organic and Biomolecular Chemistry, 2019, 17, 4543-4553.	1.5	12
44	Protein Assemblies: Nature-Inspired and Designed Nanostructures. Biomacromolecules, 2019, 20, 1829-1848.	2.6	79
45	Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9893-9903.	4.0	56
46	Self-Assembly of Lipopeptides Containing Short Peptide Fragments Derived from the Gastrointestinal Hormone PYY _{3â€"36} : From Micelles to Amyloid Fibrils. Journal of Physical Chemistry B, 2019, 123, 614-621.	1.2	20
47	4D Corneal Tissue Engineering: Achieving Timeâ€Dependent Tissue Selfâ€Curvature through Localized Control of Cell Actuators. Advanced Functional Materials, 2019, 29, 1807334.	7.8	33
48	Self-assembling unsymmetrical bis-ureas. Reactive and Functional Polymers, 2018, 124, 156-161.	2.0	7
49	The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. Journal of Physical Chemistry B, 2018, 122, 1826-1835.	1.2	14
50	Ugi multicomponent reaction to prepare peptide–peptoid hybrid structures with diverse chemical functionalities. Polymer Chemistry, 2018, 9, 482-489.	1.9	30
51	Investigations on the micellization of amphiphilic dendritic copolymers: From unimers to micelles. Journal of Colloid and Interface Science, 2018, 514, 609-614.	5.0	4
52	Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution. Biomacromolecules, 2018, 19, 167-177.	2.6	8
53	Self-Assembled Micellar Structures of Lipopeptides with Variable Number of Attached Lipid Chains Revealed by Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 9605-9615.	1.2	8
54	Amino-Acid-Based Metallo-Hydrogel That Acts Like an Esterase. ACS Applied Bio Materials, 2018, 1, 1717-1724.	2.3	35

#	Article	IF	CITATIONS
55	Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY _{3–36} . Biomacromolecules, 2018, 19, 4320-4332.	2.6	17
56	The Effect of Lipidation on the Self-Assembly of the Gut-Derived Peptide Hormone PYY _{3–36} . Bioconjugate Chemistry, 2018, 29, 2296-2308.	1.8	31
57	Supramolecular Threading of Peptide Hydrogel Fibrils. ACS Biomaterials Science and Engineering, 2018, 4, 2733-2738.	2.6	12
58	High potency of lipid conjugated TLR7 agonist requires nanoparticulate or liposomal formulation. European Journal of Pharmaceutical Sciences, 2018, 123, 268-276.	1.9	9
59	Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity. Biomacromolecules, 2018, 19, 2782-2794.	2.6	54
60	The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides. Nanoscale, 2018, 10, 9987-9995.	2.8	18
61	Enhancement of microphase ordering and mechanical properties of supramolecular hydrogen-bonded polyurethane networks. Polymer Chemistry, 2018, 9, 3406-3414.	1.9	24
62	Sequence length dependence in arginine/phenylalanine oligopeptides: Implications for self-assembly and cytotoxicity. Biophysical Chemistry, 2018, 233, 1-12.	1.5	29
63	Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights. Bioconjugate Chemistry, 2017, 28, 731-739.	1.8	43
64	Self-assembly of ultra-small micelles from amphiphilic lipopeptoids. Chemical Communications, 2017, 53, 2178-2181.	2.2	33
65	Peptide hormones and lipopeptides: from selfâ€assembly to therapeutic applications. Journal of Peptide Science, 2017, 23, 82-94.	0.8	76
66	Self-Assembly Kinetics of Amphiphilic Dendritic Copolymers. Macromolecules, 2017, 50, 1657-1665.	2.2	5
67	A tripeptide-based self-shrinking hydrogel for waste-water treatment: removal of toxic organic dyes and lead (Pb ²⁺) ions. Chemical Communications, 2017, 53, 5910-5913.	2.2	85
68	Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules, 2017, 18, 141-149.	2.6	42
69	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	2.8	33
70	Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chemical Society Reviews, 2017, 46, 4661-4708.	18.7	670
71	Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length. Biomacromolecules, 2017, 18, 2013-2023.	2.6	28
72	Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives. Scientific Reports, 2017, 7, 43637.	1.6	47

#	Article	IF	CITATIONS
73	Hybrid membrane biomaterials from self-assembly in polysaccharide and peptide amphiphile mixtures: controllable structural and mechanical properties and antimicrobial activity. RSC Advances, 2017, 7, 8366-8375.	1.7	24
74	Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Physical Chemistry Chemical Physics, 2017, 19, 1181-1189.	1.3	34
75	Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. Journal of Materials Chemistry B, 2017, 5, 8607-8617.	2.9	35
76	Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity. Biomacromolecules, 2017, 18, 3621-3629.	2.6	127
77	Self-assembled peptides: from nanostructure to bioactivity. Interface Focus, 2017, 7, 20170062.	1.5	3
78	Supramolecular Peptide Nanofiber Morphology Affects Mechanotransduction of Stem Cells. Biomacromolecules, 2017, 18, 3114-3130.	2.6	18
79	Thermally Regulated Reversible Formation of Vesicle-Like Assemblies by Hexaproline Amphiphiles. Journal of Physical Chemistry B, 2017, 121, 7443-7446.	1.2	7
80	Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir, 2017, 33, 7947-7956.	1.6	32
81	Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chemical Reviews, 2017, 117, 14015-14041.	23.0	317
82	Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management. Interface Focus, 2017, 7, 20160128.	1.5	36
83	A dynamic supramolecular polyurethane network whose mechanical properties are kinetically controlled. Polymer, 2017, 133, 143-150.	1.8	17
84	Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry, 2017, 15, 5867-5876.	1.5	136
85	Selfâ€Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride. ChemPhysChem, 2016, 17, 2118-2122.	1.0	32
86	An adhesive elastomeric supramolecular polyurethane healable at body temperature. Chemical Science, 2016, 7, 4291-4300.	3.7	65
87	Hydrodynamic behaviors of amphiphilic dendritic polymers with different degrees of amidation. Polymer Chemistry, 2016, 7, 3126-3133.	1.9	5
88	Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Soft Matter, 2016, 12, 9158-9169.	1,2	23
89	Chiral Perylene Materials by Ionic Self-Assembly. Langmuir, 2016, 32, 9023-9032.	1.6	21
90	Nanosheet Formation by an Anionic Surfactant-like Peptide and Modulation of Self-Assembly through lonic Complexation. Langmuir, 2016, 32, 10387-10393.	1.6	23

#	Article	IF	CITATIONS
91	A systematic study of the effect of the hard end-group composition on the microphase separation, thermal and mechanical properties of supramolecular polyurethanes. Polymer, 2016, 107, 368-378.	1.8	19
92	Two-Component Fluorescent-Semiconducting Hydrogel from Naphthalene Diimide-Appended Peptide with Long-Chain Amines: Variation in Thermal and Mechanical Strengths of Gels. Langmuir, 2016, 32, 13226-13233.	1.6	42
93	Tuning Ordered Pattern of Pd Species through Controlled Block Copolymer Self-Assembly. Journal of Physical Chemistry B, 2016, 120, 6829-6841.	1.2	6
94	Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide. Biomacromolecules, 2016, 17, 631-640.	2.6	23
95	Fmoc–RGDS based fibrils: atomistic details of their hierarchical assembly. Physical Chemistry Chemical Physics, 2016, 18, 1265-1278.	1.3	17
96	Self-Assembly of Telechelic Tyrosine End-Capped PEO and Poly(alanine) Polymers in Aqueous Solution. Biomacromolecules, 2016, 17, 1186-1197.	2.6	10
97	A peptide hydrogel derived from a fragment of human cardiac troponin C. Chemical Communications, 2016, 52, 4056-4059.	2.2	14
98	Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity. Biomaterials Science, 2016, 4, 346-354.	2.6	16
99	A Peptide-Based Mechano-sensitive, Proteolytically Stable Hydrogel with Remarkable Antibacterial Properties. Langmuir, 2016, 32, 1836-1845.	1.6	99
100	Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating <scp>d</scp> -amino acid residue(s). Chemical Communications, 2016, 52, 5045-5048.	2.2	106
101	A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and Surfaces B: Biointerfaces, 2016, 137, 104-108.	2.5	15
102	Tuning thermal properties and microphase separation in aliphatic polyester ABA copolymers. Polymer Chemistry, 2015, 6, 1445-1453.	1.9	32
103	Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter, 2015, 11, 3115-3124.	1.2	20
104	Time-dependent gel to gel transformation of a peptide based supramolecular gelator. Soft Matter, 2015, 11, 4944-4951.	1.2	57
105	Chain Architecture as an Orthogonal Parameter To Influence Block Copolymer Morphology. Synthesis and Characterization of Hyperbranched Block Copolymers: HyperBlocks. Macromolecules, 2015, 48, 8806-8822.	2.2	26
106	Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chemical Communications, 2015, 51, 11634-11637.	2,2	44
107	Microphase separation induced in the melt of Pluronic copolymers by blending with a hydrogen bonding urea–urethane end-capped supramolecular polymer. Soft Matter, 2015, 11, 5799-5803.	1,2	8
108	New Self-Assembling Multifunctional Templates for the Biofabrication and Controlled Self-Release of Cultured Tissue. Tissue Engineering - Part A, 2015, 21, 1772-1784.	1.6	39

#	Article	IF	CITATIONS
109	Lipopeptides: from self-assembly to bioactivity. Chemical Communications, 2015, 51, 8574-8583.	2.2	228
110	Thermodynamic and Kinetic Study of the Fibrillization of a Family of Tetrapeptides and Its Application to Self-Sorting. What Takes So Long?. Chemistry of Materials, 2015, 27, 3358-3365.	3.2	33
111	Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican. Langmuir, 2015, 31, 4490-4495.	1.6	33
112	Self-Assembly of a Designed Alternating Arginine/Phenylalanine Oligopeptide. Langmuir, 2015, 31, 4513-4523.	1.6	46
113	Self-assembly of the anti-fungal polyene amphotericin B into giant helically-twisted nanotapes. Chemical Communications, 2015, 51, 17680-17683.	2.2	2
114	Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates. Journal of Materials Science: Materials in Medicine, 2015, 26, 242.	1.7	17
115	A Thermoreversible Supramolecular Polyurethane with Excellent Healing Ability at 45 °C. Macromolecules, 2015, 48, 6132-6141.	2.2	87
116	Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. Biomacromolecules, 2015, 16, 3180-3190.	2.6	49
117	Dehydrodipeptide Hydrogelators Containing Naproxen N-Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers. Biomacromolecules, 2015, 16, 3562-3573.	2.6	38
118	Interactions between lipid-free apolipoprotein-Al and a lipopeptide incorporating the RGDS cell adhesion motif. Nanoscale, 2015, 7, 171-178.	2.8	2
119	Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8, 12690-12700.	7.3	98
120	Hybrid Proton and Electron Transport in Peptide Fibrils. Advanced Functional Materials, 2014, 24, 5873-5880.	7.8	58
121	Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chemical Communications, 2014, 50, 15948-15951.	2.2	55
122	PEG–Peptide Conjugates. Biomacromolecules, 2014, 15, 1543-1559.	2.6	246
123	Selfâ€assembling amphiphilic peptides. Journal of Peptide Science, 2014, 20, 453-467.	0.8	306
124	Self-Assembly of a Model Peptide Incorporating a Hexa-Histidine Sequence Attached to an Oligo-Alanine Sequence, and Binding to Gold NTA/Nickel Nanoparticles. Biomacromolecules, 2014, 15, 3412-3420.	2.6	24
125	Tuning Chelation by the Surfactant-Like Peptide A ₆ H Using Predetermined pH Values. Biomacromolecules, 2014, 15, 591-598.	2.6	23
126	The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Science, 2014, 2, 1222-1229.	2.6	43

#	Article	IF	CITATIONS
127	Silica templating of a self-assembling peptide amphiphile that forms nanotapes. Soft Matter, 2014, 10, 1660.	1.2	13
128	Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomaterials Science, 2014, 2, 362-369.	2.6	40
129	Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science, 2014, 2, 867-874.	2.6	20
130	Assembly of an Injectable Noncytotoxic Peptide-Based Hydrogelator for Sustained Release of Drugs. Langmuir, 2014, 30, 929-936.	1.6	143
131	Peptide Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 6866-6881.	7.2	292
132	The Instructive Role of Biomaterials in Cell-Based Therapy and Tissue Engineering. RSC Soft Matter, 2014, , 73-94.	0.2	0
133	The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9, 6033.	1.2	57
134	Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter, 2013, 9, 9572.	1.2	50
135	Electrochemical sensing of 2D condensation in amyloid peptides. Electrochimica Acta, 2013, 106, 43-48.	2.6	16
136	Collagen Stimulating Effect of Peptide Amphiphile C ₁₆ –KTTKS on Human Fibroblasts. Molecular Pharmaceutics, 2013, 10, 1063-1069.	2.3	58
137	Bioactive films produced from self-assembling peptide amphiphiles as versatile substrates for tuning cell adhesion and tissue architecture in serum-free conditions. Journal of Materials Chemistry B, 2013, 1, 6157.	2.9	40
138	Janus PEG-Based Dendrimers for Use in Combination Therapy: Controlled Multi-Drug Loading and Sequential Release. Biomacromolecules, 2013, 14, 564-574.	2.6	46
139	Interaction between a Cationic Surfactant-like Peptide and Lipid Vesicles and Its Relationship to Antimicrobial Activity. Langmuir, 2013, 29, 14246-14253.	1.6	54
140	Self-assembly of a model amphiphilic oligopeptide incorporating an arginine headgroup. Soft Matter, 2013, 9, 4794.	1.2	43
141	Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. European Polymer Journal, 2013, 49, 2961-2967.	2.6	22
142	Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles. Soft Matter, 2013, 9, 3558.	1.2	78
143	Tetragonal and Helical Morphologies from Polyferrocenylsilane Block Polyelectrolytes via Ionic Self-Assembly. Journal of the American Chemical Society, 2013, 135, 2455-2458.	6.6	35
144	New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discussions, 2013, 166, 381.	1.6	51

#	Article	IF	CITATIONS
145	Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter, 2013, 9, 9290.	1.2	77
146	Spectroscopic signatures of an Fmoc–tetrapeptide, Fmoc and fluorene. RSC Advances, 2013, 3, 10854.	1.7	22
147	Molecular insights into aggregates made of amphiphilic Fmoc-tetrapeptides. Soft Matter, 2013, 9, 11021.	1.2	17
148	Determination of orientations of aromatic groups in self-assembled peptide fibrils by polarised Raman spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 13940.	1.3	10
149	Self-assembled arginine-coated peptide nanosheets in water. Chemical Communications, 2013, 49, 1850.	2.2	92
150	Coassembly in Binary Mixtures of Peptide Amphiphiles Containing Oppositely Charged Residues. Langmuir, 2013, 29, 5050-5059.	1.6	56
151	Tuning Self-Assembled Nanostructures Through Enzymatic Degradation of a Peptide Amphiphile. Langmuir, 2013, 29, 6665-6672.	1.6	44
152	Self-Assembly of Palmitoyl Lipopeptides Used in Skin Care Products. Langmuir, 2013, 29, 9149-9155.	1.6	31
153	Insights into the Molecular Architecture of a Peptide Nanotube Using FTIR and Solidâ€State NMR Spectroscopic Measurements on an Aligned Sample. Angewandte Chemie - International Edition, 2013, 52, 10537-10540.	7.2	59
154	Proteolytically Inactive Insulin-Degrading Enzyme Inhibits Amyloid Formation Yielding Non-Neurotoxic A \hat{I}^2 Peptide Aggregates. PLoS ONE, 2013, 8, e59113.	1.1	41
155	Tissue Engineering a Fetal Membrane. Tissue Engineering - Part A, 2012, 18, 373-381.	1.6	18
156	Fibrils and nanotubes assembled from a modified amyloid- \hat{l}^2 peptide fragment differ in the packing of the same \hat{l}^2 -sheet building blocks. Chemical Communications, 2012, 48, 2976.	2.2	32
157	Local orientational disorder in peptide fibrils probed by a combination of residue-specific 13C–18O labelling, polarised infrared spectroscopy and molecular combing. Chemical Communications, 2012, 48, 11835.	2.2	11
158	Conductance of amyloid β based peptide filaments: structure–function relations. Soft Matter, 2012, 8, 8690.	1.2	49
159	Reversible thermal transition of polydiacetylene based on KTTKS collagen sequence. Chemical Communications, 2012, 48, 9774.	2.2	14
160	Slow-Release RGD-Peptide Hydrogel Monoliths. Langmuir, 2012, 28, 12575-12580.	1.6	25
161	Conformation and Self-Association of Peptide Amphiphiles Based on the KTTKS Collagen Sequence. Langmuir, 2012, 28, 12209-12215.	1.6	24
162	Electrospun supramolecular polymer fibres. European Polymer Journal, 2012, 48, 1249-1255.	2.6	21

#	Article	IF	CITATIONS
163	Selfâ€Assembly Studies of a Chiral Bisureaâ€Based Superhydrogelator. Chemistry - A European Journal, 2012, 18, 14725-14731.	1.7	40
164	Self-Assembly of a Peptide Amphiphile Containing <scp>l</scp> -Carnosine and Its Mixtures with a Multilamellar Vesicle Forming Lipid. Langmuir, 2012, 28, 11599-11608.	1.6	61
165	Structural and morphological studies of the dipeptide based l-Pro-l-Val organocatalytic gels and their rheological behaviour. Soft Matter, 2012, 8, 8865.	1.2	23
166	Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale, 2012, 4, 4426.	2.8	175
167	Altering Peptide Fibrillization by Polymer Conjugation. Biomacromolecules, 2012, 13, 2739-2747.	2.6	29
168	The mechanical properties of amniotic membrane influence its effect as a biomaterial for ocular surface repair. Soft Matter, 2012, 8, 8379.	1.2	51
169	The Amyloid Beta Peptide: A Chemist's Perspective. Role in Alzheimer's and Fibrillization. Chemical Reviews, 2012, 112, 5147-5192.	23.0	785
170	Influence of a non-ionic amphiphilic copolymer on the self-assembly of a peptide amphiphile that forms nanotapes. Soft Matter, 2012, 8, 8608.	1.2	12
171	Modulating self-assembly of a nanotape-forming peptideamphiphile with an oppositely charged surfactant. Soft Matter, 2012, 8, 217-226.	1.2	52
172	Control of strand registry by attachment of PEG chains to amyloid peptides influences nanostructure. Soft Matter, 2012, 8, 5434.	1.2	21
173	Fibrillisation of ring-closed amyloid peptides. Chemical Communications, 2012, 48, 3757.	2.2	8
174	Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127. Journal of Colloid and Interface Science, 2012, 368, 336-341.	5.0	29
175	Synthesis and phase behaviour of a homologous series of polymethacrylate-based side-chain liquid crystal polymers. European Polymer Journal, 2012, 48, 821-829.	2.6	43
176	Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Research, 2012, 8, 403-409.	0.3	65
177	pHâ€Tunable Hydrogelators for Water Purification: Structural Optimisation and Evaluation. Chemistry - A European Journal, 2012, 18, 2692-2699.	1.7	70
178	Biomimetic triblock copolymer membranes: from aqueous solutions to solid supports. Soft Matter, 2011, 7, 1129-1138.	1.2	18
179	Photopolymerization of Pluronic F127 diacrylate: a colloid-templated polymerization. Soft Matter, 2011, 7, 4928.	1.2	40
180	Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif. Soft Matter, 2011, 7, 11405.	1.2	56

#	Article	IF	CITATIONS
181	Biomimetic soft matter. Soft Matter, 2011, 7, 9533.	1.2	4
182	Tuning the Self-Assembly of the Bioactive Dipeptide <scp>l</scp> -Carnosine by Incorporation of a Bulky Aromatic Substituent. Langmuir, 2011, 27, 2980-2988.	1.6	67
183	Supramolecular Structures of Enzyme Clusters. Journal of Physical Chemistry Letters, 2011, 2, 1395-1399.	2.1	14
184	Infrared Linear Dichroism Spectroscopy on Amyloid Fibrils Aligned by Molecular Combing. Biomacromolecules, 2011, 12, 1810-1821.	2.6	19
185	Modeling the Tetraphenylalanine-PEG Hybrid Amphiphile: From DFT Calculations on the Peptide to Molecular Dynamics Simulations on the Conjugate. Journal of Physical Chemistry B, 2011, 115, 8937-8946.	1.2	23
186	Phase separated structures in tethered dPS–PMMA copolymer films revealed using X-ray scattering with a novel contrast enhancement agent. Polymer Chemistry, 2011, 2, 619-624.	1.9	4
187	Structure Variation and Evolution in Microphase-Separated Grafted Diblock Copolymer Films. Macromolecules, 2011, 44, 8527-8536.	2.2	17
188	Hydrogelation of self-assembling RGD-based peptides. Soft Matter, 2011, 7, 1326-1333.	1.2	112
189	Genetic Expression of an Amyloid Peptide Fragment and Analysis of Formylated Products. Organic Letters, 2011, 13, 2572-2575.	2.4	1
190	Multiple hydrogen bonds induce formation of nanoparticles with internal microemulsion structure by an amphiphilic copolymer. Soft Matter, 2011, 7, 10116.	1.2	16
191	Self-assembly of amphiphilic peptides. Soft Matter, 2011, 7, 4122.	1.2	390
192	Influence of End-Capping on the Self-Assembly of Model Amyloid Peptide Fragments. Journal of Physical Chemistry B, 2011, 115, 2107-2116.	1.2	52
193	Amyloid peptides incorporating a core sequence from the amyloid beta peptide and gamma amino acids: relating bioactivity to self-assembly. Chemical Communications, 2011, 47, 12470.	2.2	24
194	Phase separation in thin films of endâ€grafted block copolymers. Polymers for Advanced Technologies, 2011, 22, 924-932.	1.6	4
195	Crystallization and stereocomplexation behavior of poly(<scp>D</scp> ―and) Tj ETQq1 1 0.784314 rgBT /Over copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1397-1409.	lock 10 Tf 2.4	50 187 Td (< 30
196	A Thermoresponsive Hydrogel Based on Telechelic PEG Endâ€Capped with Hydrophobic Dipeptides. Macromolecular Bioscience, 2011, 11, 1068-1078.	2.1	40
197	Doubleâ€Gyroid Morphology of a Polystyrene <i>â€blockâ€</i> Poly(ferrocenylethylmethylsilane) Diblock Copolymer: A Route to Ordered Bicontinuous Nanoscale Architectures. Macromolecular Chemistry and Physics, 2011, 212, 198-201.	1.1	10
198	Photochemical crossâ€linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 1-8.	2.1	52

#	Article	IF	CITATIONS
199	Direct Observation of Timeâ€Resolved Polymorphic States in the Selfâ€Assembly of Endâ€Capped Heptapeptides. Angewandte Chemie - International Edition, 2011, 50, 5495-5498.	7.2	119
200	The effect of n-, s- and t-butanol on the micellization and gelation of Pluronic P123 in aqueous solution. Journal of Colloid and Interface Science, 2011, 353, 482-489.	5.0	9
201	Multiple Solâ€Gel Transitions of PEGâ€PCLâ€PEG Triblock Copolymer Aqueous Solution. Macromolecular Rapid Communications, 2010, 31, 2064-2069.	2.0	24
202	Selfâ€Assembly of a Modified Amyloid Peptide Fragment: pHâ€Responsiveness and Nematic Phase Formation. Macromolecular Bioscience, 2010, 10, 40-48.	2.1	40
203	A βâ€amino acid modified heptapeptide containing a designed recognition element disrupts fibrillization of the amyloid βâ€peptide. Journal of Peptide Science, 2010, 16, 443-450.	0.8	4
204	Interface influence. Nature Chemistry, 2010, 2, 707-708.	6.6	16
205	A Healable Supramolecular Polymer Blend Based on Aromatic Ï€â^'Ï€ Stacking and Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2010, 132, 12051-12058.	6.6	779
206	Self-assembly of an amyloid peptide fragment–PEG conjugate: lyotropic phase formation and influence of PEG crystallization. Polymer Chemistry, 2010, 1, 453-459.	1.9	16
207	Thermo-responsive microphase separated supramolecular polyurethanes. Polymer Chemistry, 2010, 1, 1263.	1.9	39
208	PEGylated Amyloid Peptide Nanocontainer Delivery and Release System. Langmuir, 2010, 26, 11624-11627.	1.6	57
209	Self-Assembly of PEGylated Peptide Conjugates Containing a Modified Amyloid β-Peptide Fragment. Langmuir, 2010, 26, 9986-9996.	1.6	53
210	Liquid crystal phase formation by biopolymers. Soft Matter, 2010, 6, 1863.	1.2	143
211	Lateral Phase Separation in Grafted Diblock Copolymer Films. Macromolecules, 2010, 43, 8177-8184.	2.2	22
212	Hydrogen Bonded Supramolecular Elastomers: Correlating Hydrogen Bonding Strength with Morphology and Rheology. Macromolecules, 2010, 43, 2512-2517.	2.2	101
213	Influence of Salt on the Self-Assembly of Two Model Amyloid Heptapeptides. Journal of Physical Chemistry B, 2010, 114, 8002-8008.	1.2	53
214	Hydrogelation and Self-Assembly of Fmoc-Tripeptides: Unexpected Influence of Sequence on Self-Assembled Fibril Structure, and Hydrogel Modulus and Anisotropy. Langmuir, 2010, 26, 4990-4998.	1.6	121
215	Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. II. NMR and Computer Simulation Investigation. Journal of Physical Chemistry B, 2010, 114, 940-951.	1.2	77
216	Alignment of a Model Amyloid Peptide Fragment in Bulk and at a Solid Surface. Journal of Physical Chemistry B, 2010, 114, 8244-8254.	1.2	33

#	Article	IF	Citations
217	Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator. Chemical Communications, 2010, 46, 7960.	2.2	96
218	Dynamics of shear-induced orientation transitions in block copolymers. Soft Matter, 2010, 6, 1941.	1.2	10
219	Fibrillar superstructure from extended nanotapes formed by a collagen-stimulating peptide. Chemical Communications, 2010, 46, 9185.	2.2	66
220	Self-Assembly of a Designed Amyloid Peptide Containing the Functional Thienylalanine Unit. Journal of Physical Chemistry B, 2010, 114, 10674-10683.	1.2	24
221	Structure of single-wall peptide nanotubes: in situ flow aligning X-ray diffraction. Chemical Communications, 2010, 46, 6270.	2.2	62
222	Selfâ€Assembly of Twoâ€Component Gels: Stoichiometric Control and Component Selection. Chemistry - A European Journal, 2009, 15, 372-379.	1.7	96
223	Highly Asymmetric Phase Diagram of a Poly(1,2â€octylene oxide)–Poly(ethylene oxide) Diblock Copolymer System Comprising a Brushâ€Like Poly(1,2â€octylene oxide) Block. Macromolecular Rapid Communications, 2009, 30, 2141-2146.	2.0	9
224	Helicalâ€Ribbon Formation by a βâ€Amino Acid Modified Amyloid βâ€Peptide Fragment. Angewandte Chemie - International Edition, 2009, 48, 2317-2320.	7.2	85
225	Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution. Biophysical Chemistry, 2009, 141, 169-174.	1.5	105
226	Structure, rheology and shear alignment of Pluronic block copolymer mixtures. Journal of Colloid and Interface Science, 2009, 329, 54-61.	5.0	60
227	Interactions of an anionic surfactant with poly(oxyalkylene) copolymers in aqueous solution. Journal of Colloid and Interface Science, 2009, 330, 67-72.	5.0	21
228	Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science, 2009, 34, 1161-1210.	11.8	495
229	Multiple morphologies of gold nano-plates by high-temperature polyol syntheses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336, 1-7.	2.3	11
230	Effect of Stretching on the Structure of Cylinder- and Sphere-Forming Styreneâ^'lsopreneâ^'Styrene Block Copolymers. Macromolecules, 2009, 42, 5256-5265.	2.2	39
231	Thermally Responsive Elastomeric Supramolecular Polymers Featuring Flexible Aliphatic Hydrogen-Bonding End-Groups. Australian Journal of Chemistry, 2009, 62, 790.	0.5	25
232	Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. I. Morphological Investigation. Journal of Physical Chemistry B, 2009, 113, 9978-9987.	1.2	90
233	Effect of Sequence Distribution on the Morphology, Crystallization, Melting, and Biodegradation of Poly(Îμ-caprolactone- <i>co</i> -Îμ-caprolactam) Copolymers. Macromolecules, 2009, 42, 6671-6681.	2.2	46
234	Aqueous Gels of Mixtures of Ionic Surfactant SDS with Pluronic Copolymers P123 or F127. Langmuir, 2009, 25, 13776-13783.	1.6	17

#	Article	IF	Citations
235	A SAXS study of flow alignment of thermotropic liquid crystal mixtures. Liquid Crystals, 2009, 36, 435-442.	0.9	10
236	Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophysical Chemistry, 2008, 138, 29-35.	1.5	49
237	The Effect of PEG Crystallization on the Morphology of PEG/Peptide Block Copolymers Containing Amyloid <i>β</i> à€Peptide Fragments. Macromolecular Chemistry and Physics, 2008, 209, 883-889.	1.1	23
238	Interactions of KLVFFâ€PEG Peptide Conjugate with Fibrinogen in Neutral Aqueous Solutions. Macromolecular Bioscience, 2008, 8, 1182-1189.	2.1	5
239	Nematic and Columnar Ordering of a PEG–Peptide Conjugate in Aqueous Solution. Chemistry - A European Journal, 2008, 14, 11369-11375.	1.7	46
240	Multiple Lyotropic Polymorphism of a Poly(ethylene glycol)â€Peptide Conjugate in Aqueous Solution. Advanced Materials, 2008, 20, 4394-4397.	11.1	52
241	Micellar and surface properties of a poly(methyl methacrylate)–block–poly(N-isopropylacrylamide) copolymer in aqueous solution. Journal of Colloid and Interface Science, 2008, 320, 70-73.	5.0	11
242	Osmotic pressure and aggregate shape in BSA/poly(ethylene glycol)-lipid/Dextran solutions. Biophysical Chemistry, 2008, 134, 34-38.	1.5	1
243	In situ formation of gold nanoparticles with a thermoresponsive block copolymer corona. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 764-767.	2.3	12
244	Self-Assembly and Hydrogelation of an Amyloid Peptide Fragment. Biochemistry, 2008, 47, 4597-4605.	1.2	265
245	Low-Molecular-Weight Gelators: Elucidating the Principles of Gelation Based on Gelator Solubility and a Cooperative Self-Assembly Model. Journal of the American Chemical Society, 2008, 130, 9113-9121.	6.6	361
246	Self-Assembly of Peptide Nanotubes in an Organic Solvent. Langmuir, 2008, 24, 8158-8162.	1.6	124
247	Effect of Ethanol on the Micellization and Gelation of Pluronic P123. Langmuir, 2008, 24, 12260-12266.	1.6	44
248	Pressure Effects Revealed by Small Angle Neutron Scattering on Block Copolymer Gels. Langmuir, 2008, 24, 8319-8324.	1.6	2
249	Effect of PEG Crystallization on the Self-Assembly of PEG/Peptide Copolymers Containing Amyloid Peptide Fragments. Langmuir, 2008, 24, 8210-8214.	1.6	58
250	Thermal Fractionation and Isothermal Crystallization of Polyethylene Nanocomposites Prepared by in Situ Polymerization. Macromolecules, 2008, 41, 2087-2095.	2.2	94
251	Form Factor of Helical Ribbons. Macromolecules, 2008, 41, 8948-8950.	2,2	28
252	Interactions of Bovine Serum Albumin with Ethylene Oxide/Butylene Oxide Copolymers in Aqueous Solution. Biomacromolecules, 2008, 9, 1366-1371.	2.6	12

#	Article	IF	Citations
253	Fractionated Crystallization and Fractionated Melting of Confined PEO Microdomains in PB- <i>b</i> -PEO and PE- <i>b</i> -PEO Diblock Copolymers. Macromolecules, 2008, 41, 879-889.	2.2	87
254	Assembly of Centimeter Long Silica Coated FePt Colloid Crystals with Tailored Interstices by Magnetic Crystallization. Chemistry of Materials, 2008, 20, 4554-4556.	3.2	14
255	Polymerâ^'Surfactant Vesicular Complexes in Aqueous Medium. Langmuir, 2008, 24, 3767-3772.	1.6	17
256	Orientational ordering in the nematic phase of a polyethylene glycol–peptide conjugate in aqueous solution. Physical Review E, 2008, 77, 062901.	0.8	15
257	Fibrillisation of hydrophobically modified amyloid peptide fragments in an organic solvent. Soft Matter, 2007, 3, 1401.	1.2	84
258	Î ² -Lactoglobulin Fibers under Capillary Flow. Biomacromolecules, 2007, 8, 77-83.	2.6	22
259	Wormlike Micelle Formation and Flow Alignment of a Pluronic Block Copolymer in Aqueous Solution. Langmuir, 2007, 23, 6896-6902.	1.6	44
260	Self-Organisation in the Assembly of Gels from Mixtures of Different Dendritic Peptide Building Blocks. Chemistry - A European Journal, 2007, 13, 2180-2188.	1.7	101
261	Biological Soft Materials. Angewandte Chemie - International Edition, 2007, 46, 4442-4455.	7.2	101
262	Peptide Fibrillization. Angewandte Chemie - International Edition, 2007, 46, 8128-8147.	7.2	564
263	Surface structure of thin asymmetric PS-b-PMMA diblock copolymers investigated by atomic force microscopy. European Polymer Journal, 2007, 43, 789-796.	2.6	9
264	Comparative characterisation by atomic force microscopy and ellipsometry of soft and solid thin films. Surface and Interface Analysis, 2007, 39, 575-581.	0.8	20
265	A SAXS study of the structure of gels formed by mixtures of polyoxyalkylene triblock copolymers. Polymer International, 2007, 56, 88-92.	1.6	7
266	Structure and Shear-Induced Order in Blends of a Diblock Copolymer with the Corresponding Homopolyme. Nanoscience and Technology, 2007, , 159-170.	1.5	0
267	Water-Soluble, Unimolecular Containers Based on Amphiphilic Multiarm Star Block Copolymers. Macromolecules, 2006, 39, 4507-4516.	2.2	154
268	Structural Analysis of PEOâ^PBO Copolymer Monolayers at the Airâ^Water Interface. Langmuir, 2006, 22, 8821-8825.	1.6	7
269	Capillary flow behavior of worm-like micelles studied by small-angle X-ray scattering and small angle light scattering. Polymers for Advanced Technologies, 2006, 17, 137-144.	1.6	30
270	Spontaneous condensation in DNA-polystyrene- b-poly(l-lysine) polyelectrolyte block copolymer mixtures. European Physical Journal E, 2006, 20, 1-6.	0.7	10

#	Article	IF	Citations
271	Melt Structure and its Transformation by Sequential Crystallization of the Two Blocks within Poly(L-lactide)-block-Poly(É>-caprolactone) Double Crystalline Diblock Copolymers. Macromolecular Chemistry and Physics, 2006, 207, 941-953.	1.1	106
272	Thermo-responsive Poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) Block Copolymers Synthesized by RAFT Polymerization: Micellization and Gelation. Macromolecular Chemistry and Physics, 2006, 207, 1718-1726.	1.1	85
273	Small-angle x-ray scattering study of flow alignment of a thermotropic liquid crystal in the nematic and smectic phases. Physical Review E, 2006, 74, 020701.	0.8	7
274	Ellipsometric study of adsorption on nanopatterned block copolymer substrates. Journal of Chemical Physics, 2005, 122, 104902.	1.2	3
275	Nanoshells and nanotubes from block copolymers. Soft Matter, 2005, 1, 36.	1.2	126
276	Structure and rheology of aqueous micellar solutions and gels formed from an associative poly(oxybutylene)–poly(oxyethylene)–poly(oxybutylene) triblock copolymer. Soft Matter, 2005, 1, 138.	1.2	43
277	Self-Assembling Nanostructured Molecular Materials and Devices. , 2005, , 343-376.		2
278	Ordering on multiple lengthscales in a series of side group liquid crystal block copolymers containing a cholesteryl-based mesogen. Soft Matter, 2005, 1, 355.	1.2	79
279	Peptide mediated formation of hierarchically organized solution and solid state polymer nanostructures. Faraday Discussions, 2005, 128, 29-41.	1.6	57
280	Nanostructure formation in poly(γ-benzyl-l-glutamate)–poly(ethylene glycol)–poly(γ-benzyl-l-glutamate) triblock copolymers in the solid state. Soft Matter, 2005, 1, 284.	1.2	22
281	Self-assembled columns of fullerene. Journal of Materials Chemistry, 2005, 15, 4429.	6.7	62
282	Synthesis and Characterization of Biocompatible, Thermoresponsive ABC and ABA Triblock Copolymer Gelators. Langmuir, 2005, 21, 11026-11033.	1.6	144
283	A Rheological and SAXS Study of the Lamellar Order in a Side-on Liquid Crystalline Block Copolymer. Macromolecules, 2005, 38, 10736-10742.	2.2	9
284	A Direct Comparison of One- and Two-Component Dendritic Self-Assembled Materials:Â Elucidating Molecular Recognition Pathways. Journal of the American Chemical Society, 2005, 127, 7130-7139.	6.6	93
285	Nonspherical Assemblies Generated from Polystyrene-b-poly(l-lysine) Polyelectrolyte Block Copolymers. Langmuir, 2005, 21, 6582-6589.	1.6	49
286	Block Copolymers of Ethylene Oxide and Phenyl Glycidyl Ether:Â Micellization, Gelation, and Drug Solubilization. Langmuir, 2005, 21, 5263-5271.	1.6	39
287	Solution Self-Assembly of Hybrid Block Copolymers Containing Poly(ethylene glycol) and Amphiphilic \hat{l}^2 -Strand Peptide Sequences. Biomacromolecules, 2005, 6, 1310-1315.	2.6	116
288	Crystallization in Poly(I-lactide)-b-poly(ε-caprolactone) Double Crystalline Diblock Copolymers: A Study Using X-ray Scattering, Differential Scanning Calorimetry, and Polarized Optical Microscopy. Macromolecules, 2005, 38, 463-472.	2.2	152

#	Article	IF	CITATIONS
289	Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly($\hat{l}\mu$ -caprolactone) diblock copolymers. Faraday Discussions, 2005, 128, 231-252.	1.6	135
290	Dynamic light scattering study of the dynamics of a gelled polymeric micellar system. Journal of Chemical Physics, 2004, 121, 11474.	1.2	9
291	Confinement Effects on the Crystallization Kinetics and Self-Nucleation of Double Crystalline Poly(p-dioxanone)-b-poly(ε-caprolactone) Diblock Copolymers. Macromolecular Symposia, 2004, 215, 369-382.	0.4	43
292	A Light and Xâ€Ray Scattering Study of Aqueous Micellar Solutions of a Diblock Copolymer of Propylene Oxide and Ethylene Oxide with Solubilized Alkylcyanobiphenyl Liquid Crystals. Journal of Macromolecular Science - Physics, 2004, 43, 893-912.	0.4	2
293	Ordered structures and phase transitions in thin films of polystyrene/polyisoprene block copolymer and blends with the corresponding homopolymers. Journal of Materials Science, 2004, 39, 2249-2252.	1.7	8
294	Cryo-TEM imaging of block copolymer micelles containing solubilized liquid crystal. Colloid and Polymer Science, 2004, 282, 514-517.	1.0	12
295	Mesoscopic crystallography of shear-aligned soft materials. Journal of Applied Crystallography, 2004, 37, 341-344.	1.9	16
296	Structure and transformation of low-temperature phases of 1,3-distearoyl-2-oleoyl glycerol. European Journal of Lipid Science and Technology, 2004, 106, 319-324.	1.0	6
297	Small-angle scattering of block copolymers. Progress in Polymer Science, 2004, 29, 909-948.	11.8	69
298	Synthesis and characterization of hydrophobically modified polyacrylamides and some observations on rheological properties. European Polymer Journal, 2004, 40, 47-56.	2.6	99
299	Ozone etching of a highly asymmetric triblock copolymer with a majority polydiene component. European Polymer Journal, 2004, 40, 1715-1721.	2.6	9
300	Structure and shear orientation of a side chain liquid crystal polymer studied by small angle X-ray scattering. Liquid Crystals, 2004, 31, 663-670.	0.9	3
301	Structure of Aqueous Gels Formed by Triblock and Diblock Copolymers with Oxyethylene and Oxyphenylethylene Blocks. Journal of Macromolecular Science - Physics, 2004, 43, 13-27.	0.4	9
302	SAXS Investigation of ABC Triblock Star Terpolymers in Aqueous Solution. Journal of Macromolecular Science - Physics, 2004, 43, 43-57.	0.4	3
303	Mechanism of the Transition between Lamellar and Gyroid Phases Formed by a Diblock Copolymer in Aqueous Solution. Langmuir, 2004, 20, 10785-10790.	1.6	55
304	Microstructure and Physical Properties of a pH-Responsive Gel Based on a Novel Biocompatible ABA-Type Triblock Copolymer. Langmuir, 2004, 20, 4306-4309.	1.6	66
305	Gelation of Concentrated Micellar Solutions of a Triblock Copolymer of Ethylene Oxide and Styrene Oxide, S5E45S5. Langmuir, 2004, 20, 4272-4278.	1.6	21
306	Small-Angle Neutron Scattering Study of the Structure of Superswollen Micelles Formed by a Highly Asymmetric Poly(oxybutylene)â^Poly(oxyethylene) Diblock Copolymer in Aqueous Solution. Langmuir, 2004, 20, 2992-2994.	1.6	20

#	Article	IF	CITATIONS
307	In Situ Atomic Force Microscopy Imaging of Adsorbed Block Copolymer Micelles. Macromolecules, 2004, 37, 5337-5351.	2.2	56
308	The Packing of Triacylglycerols from SAXS Measurements:Â Application to the Structure of 1,3-Distearoyl-2-oleoyl-sn-glycerol Crystal Phases. Journal of Physical Chemistry B, 2004, 108, 8069-8083.	1,2	33
309	Interplay between Smectic Ordering and Microphase Separation in a Series of Side-Group Liquid-Crystal Block Copolymers. Macromolecules, 2004, 37, 4798-4807.	2.2	120
310	Ordered Structures and Phase Transitions in Mixtures of a Polystyrene/Polyisoprene Block Copolymer with the Corresponding Homopolymers in Thin Films and in Bulk. Macromolecules, 2004, 37, 3369-3377.	2.2	45
311	Morphologies of block copolymer melts. Current Opinion in Solid State and Materials Science, 2004, 8, 426-438.	5.6	74
312	Rheological and Structural Characterization of Hydrophobically Modified Polyacrylamide Solutions in the Semidilute Regime. Macromolecules, 2004, 37, 1492-1501.	2.2	56
313	Nanotechnology with Soft Materials. Angewandte Chemie - International Edition, 2003, 42, 1692-1712.	7.2	840
314	Surface energy of ethylene-co-1-butene copolymers determined by contact angle methods. Journal of Colloid and Interface Science, 2003, 260, 234-239.	5.0	23
315	An atomic force microscopy study of ozone etching of a polystyrene/polyisoprene block copolymer. Polymer, 2003, 44, 2403-2410.	1.8	20
316	Large research consortia not the answer to European fragmentation. Nature Materials, 2003, 2, 500-500.	13.3	0
317	Influence of Added Clay Particles on the Structure and Rheology of a Hexagonal Phase Formed by an Amphiphilic Block Copolymer in Aqueous Solution. Macromolecules, 2003, 36, 1694-1700.	2.2	35
318	Nanostructure fabrication using block copolymers. Nanotechnology, 2003, 14, R39-R54.	1.3	735
319	Nucleation and Crystallization in Double Crystalline Poly(p-dioxanone)-b-poly(Îμ-caprolactone) Diblock Copolymers. Macromolecules, 2003, 36, 1633-1644.	2.2	167
320	SANS and Rheology Study of Aqueous Solutions and Gels Containing Highly Swollen Diblock Copolymer Micelles. Langmuir, 2003, 19, 3229-3235.	1.6	13
321	Nanoscale Structure of Poly(Ethylene Glycol) Hybrid Block Copolymers containing Amphiphilic β-Strand Peptide Sequences. Biomacromolecules, 2003, 4, 859-863.	2.6	132
322	Morphological Behavior of Thermally Treated Polystyrene-b-polybutadiene-b-poly(Îμ-caprolactone) ABC Triblock Copolymers. Macromolecules, 2003, 36, 4515-4525.	2.2	33
323	A Small-Angle Neutron and X-ray Contrast Variation Scattering Study of the Structure of Block Copolymer Micelles:  Corona Shape and Excluded Volume Interactions. Macromolecules, 2003, 36, 416-433.	2.2	168
324	Hierarchical Order in a Side-Group Liquid Crystalline Block Copolymer. Macromolecules, 2003, 36, 8898-8901.	2.2	37

#	Article	IF	CITATIONS
325	Discotic Liquid Crystalline Triblock Copolymers:Â Interplay of Liquid Crystal Architecture with Microphase Separation. Macromolecules, 2003, 36, 1526-1533.	2.2	32
326	Templating the patterning of gold nanoparticles using a stained triblock copolymer film surfaceElectronic supplementary information (ESI) available: TEM image of a gold nanoparticle, showing lattice of gold atoms, with corresponding electron diffraction pattern. See http://www.rsc.org/suppdata/jm/b3/b308479p/. Journal of Materials Chemistry, 2003, 13, 2412.	6.7	25
327	In Situ Atomic Force Microscopy Imaging of Block Copolymer Micelles Adsorbed on a Solid Substrate. Langmuir, 2003, 19, 10449-10453.	1.6	21
328	Neutron spin-echo investigation of the dynamics of block copolymer micelles. Journal of Chemical Physics, 2003, 119, 8158-8161.	1.2	19
329	Liquid-solid transition in a model hard sphere system of block copolymer micelles. Physical Review E, 2002, 65, 050601.	0.8	15
330	A neutron scattering study of orientational ordering in the smectic and nematic phases of the liquid crystal, $2\hat{a} \in ^2$, $3\hat{a} \in ^2$ -difluoro-4-heptyl-4 $\hat{a} \in ^3$ -nonyl p-terphenyl. Journal of Chemical Physics, 2002, 116, 3887-3899.	1.2	13
331	A Small-Angle X-ray Scattering Study of the Structure of Gels Formed by Poly(oxyethylene)â^'Poly(oxypropylene) Diblock Copolymers in Water. Langmuir, 2002, 18, 1051-1055.	1.6	13
332	Templated Crystallization from Oriented Gyroid and Hexagonal Melt Phases in a Diblock Copolymer. Macromolecules, 2002, 35, 8839-8845.	2.2	28
333	Solubilization of Alkylcyanobiphenyl Liquid Crystals in Aqueous Micellar Solutions of a Diblock Copolymer of Propylene Oxide and Ethylene Oxide Studied Using Dynamic and Static Light Scattering. Journal of Physical Chemistry B, 2002, 106, 11728-11736.	1.2	4
334	A small-angle neutron scattering investigation of the structure of highly swollen block copolymer micelles. Journal of Chemical Physics, 2002, 117, 8124-8129.	1.2	38
335	The liquid–solid transition in a micellar solution of a diblock copolymer in water. Journal of Chemical Physics, 2002, 116, 10947-10958.	1.2	45
336	Mesoscopic Simulations of Lamellar Orientation in Block Copolymers. Macromolecular Theory and Simulations, 2002, 11, 123-127.	0.6	24
337	Supramolecular Layered Structures of Comb-like Poly(\hat{l}^2 -peptide)s Showing Thermochromic Properties. Advanced Materials, 2002, 14, 203-205.	11.1	27
338	Orientational correlations in stripe patterns. Physica B: Condensed Matter, 2002, 322, 110-115.	1.3	3
339	Modelling small-angle scattering data from micelles. Current Opinion in Colloid and Interface Science, 2002, 7, 167-172.	3.4	43
340	Inhomogeneous flow in a micellar solution of a diblock copolymer: creep rheometry experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 196, 39-50.	2.3	7
341	SAXS study of the swelling and shear orientation of the lamellar phase formed by a diblock copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211, 9-18.	2.3	6
342	Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer, 2002, 43, 3069-3077.	1.8	85

#	Article	IF	CITATIONS
343	Nanopatterned surfaces obtained with semicrystalline ABC triblock copolymers. Polymer, 2002, 43, 4207-4216.	1.8	28
344	Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerisation. Polymer, 2002, 43, 5181-5186.	1.8	126
345	Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers. Physical Review E, 2001, 63, 041503.	0.8	41
346	Structure and flow behaviour of block copolymers. Journal of Physics Condensed Matter, 2001, 13, R643-R671.	0.7	111
347	Aqueous mesophases of block copolymers of ethylene oxide and 1,2-butylene oxide. Physical Chemistry Chemical Physics, 2001, 3, 2972-2980.	1.3	85
348	Cell Dynamics Simulations of Microphase Separation in Block Copolymers. Macromolecules, 2001, 34, 116-126.	2.2	78
349	Solubilization of Alkylcyanobiphenyls in Aqueous Micellar Solutions of a Diblock Copolymer of Propylene Oxide and Ethylene Oxide. Langmuir, 2001, 17, 2106-2111.	1.6	18
350	Melt Phase Behavior of Poly(oxyethylene)â^Poly(oxypropylene) Diblock Copolymers. Macromolecules, 2001, 34, 4079-4081.	2.2	25
351	Blends of AB/BC Diblock Copolymers with a Large Interaction Parameter χ. Macromolecules, 2001, 34, 4907-4916.	2.2	29
352	Fast and Easy Flow-Alignment Technique of Lyotropic Liquid-Crystalline Hexagonal Phases of Block Copolymers and Surfactants. Macromolecules, 2001, 34, 3503-3506.	2.2	8
353	Amphiphilic diblock copolymer gels: the relationship between structure and rheology. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2001, 359, 1017-1044.	1.6	53
354	Association Properties of Diblock Copolymers of Propylene Oxide and Ethylene Oxide in Aqueous Solution. The Effect of P and E Block Lengths. Langmuir, 2001, 17, 8085-8091.	1.6	40
355	A Small-Angle Neutron Scattering Study of Spherical and Wormlike Micelles Formed by Poly(oxyethylene)-Based Diblock Copolymers. Langmuir, 2001, 17, 6386-6388.	1.6	58
356	Rheology and Structures of Aqueous Gels of Triblock(oxyethylene/oxybutylene/oxyethylene) Copolymers with Lengthy Oxyethylene Blocks. Langmuir, 2001, 17, 4232-4239.	1.6	30
357	Ordered melts of block copolymers of ethylene oxide and 1,2-butylene oxide. Physical Chemistry Chemical Physics, 2001, 3, 2961-2971.	1.3	71
358	Small-angle X-ray scattering study of a poly(oxyphenylethylene)-poly(oxyethylene) diblock copolymer gel under shear flow. Colloid and Polymer Science, 2001, 279, 621-628.	1.0	16
359	Flow mechanisms in the face-centred cubic micellar gel of a diblock copolymer. Colloid and Polymer Science, 2001, 279, 1029-1033.	1.0	9
360	Non-linear rheology of a face-centred cubic phase in a diblock copolymer gel. Rheologica Acta, 2001, 40, 39-48.	1.1	62

#	Article	IF	CITATIONS
361	Association Properties of a Diblock Copolymer of Ethylene Oxide and Styrene Oxide in Aqueous Solution Studied by Light Scattering and Rheometry. Macromolecular Chemistry and Physics, 2001, 202, 1345-1354.	1.1	32
362	Stress relaxation experiments on a lamellar polystyrene–polyisoprene diblock copolymer melt. Polymer, 2001, 42, 7203-7208.	1.8	4
363	Micro- vs. macro-phase separation in binary blends of poly(styrene)-poly(isoprene) and poly(isoprene)-poly(ethylene oxide) diblock copolymers. Europhysics Letters, 2001, 53, 680-686.	0.7	49
364	Crystallization in block copolymer melts: Small soft structures that template larger hard structures. Journal of Chemical Physics, 2001, 114, 5425-5431.	1.2	53
365	Linear Melt Rheology and Small-Angle X-ray Scattering of AB Diblocks vs A2B2Four Arm Star Block Copolymers. Macromolecules, 2000, 33, 8399-8414.	2.2	34
366	Cell dynamics simulations of block copolymers. Macromolecular Theory and Simulations, 2000, 9, 363-380.	0.6	56
367	Effect of planar extension on the structure and mechanical properties of polystyrene–poly(ethylene-) Tj ETQq1 1	0.784314 1.8	l 4.rgBT /Ov∈
368	Structure development in multi-block copolymerisation: comparison of experiments with cell dynamics simulations. Polymer, 2000, 41, 2569-2576.	1.8	25
369	Correlation of lattice deformation with macroscopic strain for the hexagonal-packed cylinder phase of a triblock copolymer. Polymer, 2000, 41, 2577-2582.	1.8	16
370	The effect of shear on ordered block copolymer solutions. Current Opinion in Colloid and Interface Science, 2000, 5, 341-349.	3.4	73
371	Extensional and shear rheometry of oriented triblock copolymers. Rheologica Acta, 2000, 39, 191-200.	1.1	9
372	Structures of amphiphilic block copolymers in their liquid and solid states., 2000,, 151-167.		5
373	Rheology and structures of aqueous gels of diblock(oxyethylene–oxybutylene) copolymers with lengthy oxyethylene blocks. Physical Chemistry Chemical Physics, 2000, 2, 2755-2763.	1.3	56
374	Contrast Variation Small-Angle Neutron Scattering Study of the Structure of Block Copolymer Micelles in a Slightly Selective Solvent at Semidilute Concentrations. Macromolecules, 2000, 33, 542-550.	2.2	76
375	Rheology and Structures of Aqueous Gels of Diblock(Oxyethylene/Oxybutylene) Copolymer E22B7. Journal of Physical Chemistry B, 2000, 104, 9788-9794.	1.2	32
376	From Hard Spheres to Soft Spheres:Â The Effect of Copolymer Composition on the Structure of Micellar Cubic Phases Formed by Diblock Copolymers in Aqueous Solution. Langmuir, 2000, 16, 2508-2514.	1.6	131
377	Effect of Shear on the Face-Centered Cubic Phase in a Diblock Copolymer Gel. Macromolecules, 2000, 33, 2163-2170.	2.2	37
378	Lifshitz points in blends of AB and BC diblock copolymers. Europhysics Letters, 1999, 45, 83-89.	0.7	24

#	Article	IF	Citations
379	Shear-induced layer alignment in the smectic phase of a side chain liquid crystal polymer. Polymer, 1999, 40, 3599-3603.	1.8	16
380	A shear induced transition of lamellar alignment in a concentrated diblock copolymer solution. Polymer, 1999, 40, 5709-5714.	1.8	24
381	X-ray scattering in polymers and micelles. Radiation Physics and Chemistry, 1999, 56, 159-173.	1.4	28
382	Dewetting of Thin Block Copolymer Films. Journal of Colloid and Interface Science, 1999, 209, 255-260.	5.0	43
383	Chain length dependence of the mean field temperature in poly(oxyethylene)–poly(oxybutylene) diblock copolymers. Physical Chemistry Chemical Physics, 1999, 1, 2093-2095.	1.3	5
384	Liquid crystal tetramers. Journal of Materials Chemistry, 1999, 9, 2321-2325.	6.7	53
385	Lamellar-to-gyroid transition in a poly(oxyethylene)–poly(oxybutylene) diblock copolymer melt. Physical Chemistry Chemical Physics, 1999, 1, 2097-2101.	1.3	47
386	Micelles and gels of oxyethylene–oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length. Physical Chemistry Chemical Physics, 1999, 1, 2773-2785.	1.3	91
387	Diblock Copoly(oxyethylene/oxybutylene) E41B8in Water:Â Liquid-Crystal Mesophases Studied by Small-Angle X-ray Scattering. Macromolecules, 1999, 32, 2058-2060.	2.2	18
388	Anomalous Difference in the Orderâ 'Disorder Transition Temperature Comparing a Symmetric Diblock Copolymer AB with Its Hetero-Four-Arm Star Analog A2B2. Macromolecules, 1999, 32, 7483-7495.	2.2	31
389	Smectic ordering in a vitrified side-chain liquid crystal polymer film. Journal of Materials Science Letters, 1998, 17, 339-341.	0.5	4
390	A thermally induced transition from a body-centred to a face-centred cubic lattice in a diblock copolymer gel. Colloid and Polymer Science, 1998, 276, 446-450.	1.0	52
391	Synthesis, thermal characterization and rheological properties of a homologous series of polymethacrylate-based side-chain liquid crystal polymers. Polymer, 1998, 39, 1197-1205.	1.8	34
392	Crystallization thermodynamics and kinetics in semicrystalline diblock copolymers. Polymer, 1998, 39, 1429-1437.	1.8	77
393	Crystal thicknesses in semicrystalline oxyethylene/oxybutylene block copolymers by atomic force microscopy and SAXS. Polymer, 1998, 39, 3321-3326.	1.8	33
394	Shear-induced orientational order in the hexagonal phase of oxyethylene/oxybutylene diblock copolymer gels. Polymer, 1998, 39, 4891-4896.	1.8	20
395	Cubic gels and lamellar crystals in concentrated solutions of an amphiphilic diblock copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 145, 185-190.	2.3	12
396	Simultaneous Rheology and Small-Angle Scattering Experiments on Block Copolymer Gels and Melts in Cubic Phases. Journal of Applied Crystallography, 1998, 31, 881-889.	1.9	29

#	Article	IF	CITATIONS
397	Effect of block architecture on the micellisation and gelation of block copolymers of ethylene oxide and 1,2-butylene oxide in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3639-3647.	1.7	33
398	Shear-Induced Orientational Transitions in the Body-Centered Cubic Phase of a Diblock Copolymer Gel. Macromolecules, 1998, 31, 3906-3911.	2.2	69
399	Micellar Ordering in Concentrated Solutions of Di- and Triblock Copolymers in a Slightly Selective Solvent. Macromolecules, 1998, 31, 1188-1196.	2.2	64
400	A Small-Angle Neutron-Scattering Study of Shear-Induced Ordering in the Cubic Phase of a Block Copolymer Gel. Langmuir, 1998, 14, 3182-3186.	1.6	33
401	Orientational Ordering of a Poly(oxyethylene)â^'Poly(oxybutylene) Diblock Copolymer Gel under Steady Shear Flow. Macromolecules, 1998, 31, 2952-2956.	2.2	37
402	Mesoscopic Crystallography:Â A Small-Angle Neutron Scattering Study of the Body-Centered Cubic Micellar Structure Formed in a Block Copolymer Gel. Macromolecules, 1998, 31, 6958-6963.	2.2	38
403	Transformations to and from the Gyroid Phase in a Diblock Copolymer. Macromolecules, 1998, 31, 5702-5716.	2.2	216
404	Microphase Separation in Poly(oxyethylene)â^Poly(oxybutylene) Diblock Copolymers. Macromolecules, 1998, 31, 8110-8116.	2.2	63
405	An integrated Couette system for in situ shearing of polymer and surfactant solutions and gels with simultaneous small angle x-ray scattering. Review of Scientific Instruments, 1998, 69, 3015-3021.	0.6	35
406	Shear-induced orientation of the body-centered-cubic phase in a diblock copolymer gel. Physical Review E, 1998, 58, 7620-7628.	0.8	42
407	Effect of shear on cubic phases in gels of a diblock copolymer. Journal of Chemical Physics, 1998, 108, 6929-6936.	1.2	59
408	A small angle neutron scattering study of the conformation of a side chain liquid crystal poly(methacrylate) in the smectic C phase. Liquid Crystals, 1997, 22, 679-684.	0.9	13
409	On the Landauâ^Brazovskii Theory for Block Copolymer Melts. Macromolecules, 1997, 30, 3701-3703.	2.2	48
410	Ordered Phases in Aqueous Solutions of Diblock Oxyethylene/Oxybutylene Copolymers Investigated by Simultaneous Small-Angle X-ray Scattering and Rheology. Macromolecules, 1997, 30, 5721-5728.	2.2	88
411	A High-Resolution Calorimetry Study of the Orderâ^'Disorder Transition in a Diblock Copolymer Melt. Macromolecules, 1997, 30, 6674-6676.	2.2	24
412	Chain Folding in Semicrystalline Oxyethylene/Oxybutylene Diblock Copolymers. Macromolecules, 1997, 30, 8392-8400.	2.2	97
413	Chain Folding in Crystallizable Block Copolymers. Macromolecules, 1997, 30, 1723-1727.	2.2	116
414	Asymmetric block copolymers in neutral good solvents: self-diffusion through the ordering transition. Macromolecular Chemistry and Physics, 1997, 198, 983-995.	1.1	23

#	Article	IF	CITATIONS
415	Orderâ^'Disorder Transition in Poly(oxyethylene)â^'Poly(oxybutylene) Diblock Copolymers. Macromolecules, 1996, 29, 6212-6221.	2.2	58
416	Morphologies of Microphase-Separated A2B Simple Graft Copolymers. Macromolecules, 1996, 29, 5091-5098.	2.2	124
417	Structure and Dynamics of Concentrated Solutions of Asymmetric Block Copolymers in Slightly Selective Solvents. Macromolecules, 1996, 29, 5955-5964.	2.2	62
418	Crystallization of nanoscale-confined diblock copolymer chains. Polymer, 1996, 37, 4425-4429.	1.8	112
419	Orientational ordering in the nematic phase of a thermotropic liquid crystal: A small angle neutron scattering study. Journal of Chemical Physics, 1996, 104, 10046-10054.	1.2	32
420	Crystallization in Oriented Semicrystalline Diblock Copolymers. Macromolecules, 1996, 29, 8835-8843.	2.2	231
421	Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules, 1995, 28, 8796-8806.	2.2	965
422	Structure Development in Semicrystalline Diblock Copolymers Crystallizing from the Ordered Melt. Macromolecules, 1995, 28, 3860-3868.	2.2	230
423	Complex layered phases in asymmetric diblock copolymers. Journal De Physique II, 1994, 4, 2161-2186.	0.9	33
424	Strain-induced instabilities in hexagonal columnar phases. Physical Review E, 1994, 50, 2872-2880.	0.8	11
425	Analysis of neutron and X-ray reflectivity data by constrained least-squares methods. Physica B: Condensed Matter, 1994, 198, 16-23.	1.3	51
426	Analysis of neutron and X-ray reflectivity data. I. Theory. Journal of Applied Crystallography, 1994, 27, 29-35.	1.9	80
427	Analysis of neutron and X-ray reflectivity data. II. Constrained least-squares methods. Journal of Applied Crystallography, 1994, 27, 36-49.	1.9	117
428	Harmonic corrections to the meanâ€field phase diagram for block copolymers. Journal of Chemical Physics, 1994, 100, 6813-6817.	1.2	34
429	Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition. Macromolecules, 1994, 27, 6922-6935.	2.2	412
430	Hexagonal mesophases between lamellae and cylinders in a diblock copolymer melt. Macromolecules, 1993, 26, 5959-5970.	2.2	263
431	On the morphology of a lamellar triblock copolymer film. Journal De Physique II, 1993, 3, 139-146.	0.9	17
432	Orientational ordering in liquid crystals: isotope labelling neutron diffraction experiments. Molecular Physics, 1992, 76, 951-977.	0.8	19

#	Article	IF	CITATIONS
433	The influence of molecular biaxiality on intramolecular X-ray and neutron scattering from uniaxial nematic liquid crystals. Molecular Physics, 1991, 74, 1221-1231.	0.8	5
434	Scattering from uniform, cylindrically symmetric particles in liquid crystal phases. Journal of Chemical Physics, 1991, 95, 9376-9383.	1.2	6
435	Introduction to Block Copolymers. , 0, , 1-29.		10
436	Applications of Block Copolymer Surfactants. , 0, , 325-340.		12
437	Syntheses and Characterizations of Block Copolymers Prepared via Controlled Radical Polymerization Methods., 0,, 71-125.		0
438	Crystallization Within Block Copolymer Mesophases. , 0, , 213-243.		46
439	Recent Developments in Synthesis of Model Block Copolymers Using Ionic Polymerisation. , 0, , 31-69.		6
440	Lithography with Self-Assembled Block Copolymer Microdomains. , 0, , 295-323.		8
441	Self-Consistent Field Theory of Block Copolymers. , 0, , 265-293.		18
442	Melt Behaviour of Block Copolymers. , 0, , 127-158.		5
443	Phase Behaviour of Block Copolymer Blends. , 0, , 159-212.		22
444	Development of Elastomers Based on Fully Hydrogenated Styrene–Diene Block Copolymers. , 0, , 341-361.		1
445	Dynamical Microphase Modelling with Mesodyn. , 0, , 245-264.		0
446	Colloids., 0,, 111-159.		1
447	Amphiphiles., 0,, 161-220.		0
448	Biological Soft Matter., 0,, 275-311.		0
449	Numerical Solutions to Questions. , 0, , 313-315.		0
450	Emerging themes in polymer rheology., 0,, 185-197.		0

ARTICLE IF CITATIONS

451 Emerging themes in polymer theory. , 0, , 223-240. 0