
Susan M Farrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Runs of Homozygosity in European Populations. American Journal of Human Genetics, 2008, 83, 359-372.	6.2	958
2	Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature Genetics, 2007, 39, 989-994.	21.4	676
3	Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 2013, 45, 145-154.	21.4	675
4	Cancer risk associated with germline DNA mismatch repair gene mutations. Human Molecular Genetics, 1997, 6, 105-110.	2.9	593
5	Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics, 2008, 40, 631-637.	21.4	542
6	A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nature Genetics, 2008, 40, 623-630.	21.4	514
7	Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nature Genetics, 2008, 40, 1426-1435.	21.4	498
8	Identification and Survival of Carriers of Mutations in DNA Mismatch-Repair Genes in Colon Cancer. New England Journal of Medicine, 2006, 354, 2751-2763.	27.0	424
9	Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nature Genetics, 2014, 46, 107-115.	21.4	410
10	Genetic instability occurs in the majority of young patients with colorectal cancer. Nature Medicine, 1995, 1, 348-352.	30.7	355
11	Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genetics, 2010, 42, 973-977.	21.4	335
12	Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. Journal of the National Cancer Institute, 2010, 102, 193-201.	6.3	328
13	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	12.8	295
14	Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nature Genetics, 2008, 40, 26-28.	21.4	277
15	Germline Susceptibility to Colorectal Cancer Due to Base-Excision Repair Gene Defects. American Journal of Human Genetics, 2005, 77, 112-119.	6.2	268
16	Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut, 2010, 59, 1670-1679.	12.1	254
17	Dietary Flavonoids and the Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 684-693.	2.5	207
18	Multiple Common Susceptibility Variants near BMP Pathway Loci GREM1, BMP4, and BMP2 Explain Part of the Missing Heritability of Colorectal Cancer. PLoS Genetics, 2011, 7, e1002105.	3.5	188

SUSAN M FARRINGTON

#	Article	IF	CITATIONS
19	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	12.8	172
20	Systematic Analysis of hMSH2 and hMLH1 in Young Colon Cancer Patients and Controls. American Journal of Human Genetics, 1998, 63, 749-759.	6.2	159
21	Aurora- A/STK15 T + 91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. Carcinogenesis, 2005, 26, 1368-1373.	2.8	132
22	Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Human Molecular Genetics, 2014, 23, 4729-4737.	2.9	128
23	Plasma Vitamin D Concentration Influences Survival Outcome After a Diagnosis of Colorectal Cancer. Journal of Clinical Oncology, 2014, 32, 2430-2439.	1.6	128
24	Dietary Fatty Acids and Colorectal Cancer: A Case-Control Study. American Journal of Epidemiology, 2007, 166, 181-195.	3.4	120
25	Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42â€^103 individuals. Gut, 2013, 62, 871-881.	12.1	117
26	IgG Glycome in Colorectal Cancer. Clinical Cancer Research, 2016, 22, 3078-3086.	7.0	111
27	A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Scientific Reports, 2015, 5, 10442.	3.3	109
28	The Association of Dietary Intake of Purine-Rich Vegetables, Sugar-Sweetened Beverages and Dairy with Plasma Urate, in a Cross-Sectional Study. PLoS ONE, 2012, 7, e38123.	2.5	106
29	Systematic Meta-Analyses and Field Synopsis of Genetic Association Studies in Colorectal Cancer. Journal of the National Cancer Institute, 2012, 104, 1433-1457.	6.3	91
30	Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Science Advances, 2020, 6, eaax0301.	10.3	90
31	Glycosylation of plasma IgG in colorectal cancer prognosis. Scientific Reports, 2016, 6, 28098.	3.3	84
32	Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. European Journal of Cancer, 2017, 84, 228-238.	2.8	81
33	Evidence of Inbreeding Depression on Human Height. PLoS Genetics, 2012, 8, e1002655.	3.5	79
34	Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. The Lancet Gastroenterology and Hepatology, 2020, 5, 55-62.	8.1	79
35	Dietary Vitamin B6 Intake and the Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 171-182.	2.5	78
36	Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. International Journal of Cancer, 2017, 140, 2701-2708.	5.1	76

#	Article	IF	CITATIONS
37	Diet, Environmental Factors, and Lifestyle Underlie the High Prevalence of Vitamin D Deficiency in Healthy Adults in Scotland, and Supplementation Reduces the Proportion That Are Severely Deficient. Journal of Nutrition, 2011, 141, 1535-1542.	2.9	75
38	Classification of ambiguous mutations in DNA mismatch repair genes identified in a population-based study of colorectal cancer. Human Mutation, 2008, 29, 367-374.	2.5	68
39	The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. British Journal of Cancer, 2020, 123, 1705-1712.	6.4	67
40	Early-onset colorectal cancer with stable microsatellite DNA and near-diploid chromosomes. Oncogene, 2001, 20, 4871-4876.	5.9	65
41	Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans. PLoS ONE, 2015, 10, e0119752.	2.5	64
42	Analysis of Germline GLI1 Variation Implicates Hedgehog Signalling in the Regulation of Intestinal Inflammatory Pathways. PLoS Medicine, 2008, 5, e239.	8.4	63
43	Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC Medicine, 2018, 16, 142.	5.5	62
44	Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. International Journal of Epidemiology, 2019, 48, 1425-1434.	1.9	61
45	Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer. British Journal of Cancer, 2016, 115, 266-272.	6.4	57
46	Plasma N-glycans in colorectal cancer risk. Scientific Reports, 2018, 8, 8655.	3.3	57
47	Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. Human Molecular Genetics, 2011, 20, 2879-2888.	2.9	56
48	Modification of the inverse association between dietary vitamin D intake and colorectal cancer risk by a <i>Fok</i> I variant supports a chemoprotective action of Vitamin D intake mediated through VDR binding. International Journal of Cancer, 2008, 123, 2170-2179.	5.1	54
49	Instrumental Variable Estimation of the Causal Effect of Plasma 25-Hydroxy-Vitamin D on Colorectal Cancer Risk: A Mendelian Randomization Analysis. PLoS ONE, 2012, 7, e37662.	2.5	51
50	Gene–environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and metaâ€analyses of observational studies. International Journal of Cancer, 2019, 145, 2315-2329.	5.1	47
51	Evidence for an age-related influence of microsatellite instability on colorectal cancer survival. International Journal of Cancer, 2002, 98, 844-850.	5.1	45
52	Quantification of tumour budding, lymphatic vessel density and invasion through image analysis in colorectal cancer. Journal of Translational Medicine, 2014, 12, 156.	4.4	42
53	Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Human Molecular Genetics, 2019, 28, 2062-2077.	2.9	40
54	Statin use and association with colorectal cancer survival and risk: case control study with prescription data linkage. BMC Cancer, 2012, 12, 487.	2.6	39

#	Article	IF	CITATIONS
55	Associations between dietary and lifestyle risk factors and colorectal cancer in the Scottish population. European Journal of Cancer Prevention, 2014, 23, 8-17.	1.3	39
56	Variation at 2q35 (<i>PNKD</i> and <i>TMBIM1</i>) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Human Molecular Genetics, 2016, 25, 2349-2359.	2.9	37
57	Ten Common Genetic Variants Associated with Colorectal Cancer Risk Are Not Associated with Survival after Diagnosis. Clinical Cancer Research, 2010, 16, 3754-3759.	7.0	36
58	Sequencing and analysis of an Irish human genome. Genome Biology, 2010, 11, R91.	9.6	36
59	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	3.3	35
60	Systematic meta-analyses, field synopsis and global assessment of the evidence of genetic association studies in colorectal cancer. Gut, 2020, 69, 1460-1471.	12.1	27
61	Genomeâ€wide association study and metaâ€analysis in Northern European populations replicate multiple colorectal cancer risk loci. International Journal of Cancer, 2018, 142, 540-546.	5.1	26
62	Modification of the associations between lifestyle, dietary factors and colorectal cancer risk by APC variants. Carcinogenesis, 2008, 29, 1774-1780.	2.8	25
63	Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer. Scientific Reports, 2015, 5, 16286.	3.3	24
64	Mosaicism and Sporadic Familial Adenomatous Polyposis. American Journal of Human Genetics, 1999, 64, 653-658.	6.2	21
65	Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. International Journal of Epidemiology, 2016, 45, 186-205.	1.9	21
66	Association between common mtDNA variants and all-cause or colorectal cancer mortality. Carcinogenesis, 2010, 31, 296-301.	2.8	20
67	A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci. Epigenetics and Chromatin, 2012, 5, 6.	3.9	20
68	Performance of prediction models on survival outcomes of colorectal cancer with surgical resection: A systematic review and meta-analysis. Surgical Oncology, 2019, 29, 196-202.	1.6	20
69	Deciphering the genetic architecture of low-penetrance susceptibility to colorectal cancer. Human Molecular Genetics, 2013, 22, 5075-5082.	2.9	19
70	Meta-Analysis of Mismatch Repair Polymorphisms within the Cogent Consortium for Colorectal Cancer Susceptibility. PLoS ONE, 2013, 8, e72091.	2.5	19
71	Higher Post-Operative Serum Vitamin D Level is Associated with Better Survival Outcome in Colorectal Cancer Patients. Nutrition and Cancer, 2019, 71, 1078-1085.	2.0	18
72	Prediction of colorectal cancer risk based on profiling with common genetic variants. International Journal of Cancer, 2020, 147, 3431-3437.	5.1	17

SUSAN M FARRINGTON

#	Article	IF	CITATIONS
73	Genetically predicted physical activity levels are associated with lower colorectal cancer risk: a Mendelian randomisation study. British Journal of Cancer, 2021, 124, 1330-1338.	6.4	17
74	Re: Association Between Biallelic and Monoallelic Germline MYH Gene Mutations and Colorectal Cancer Risk. Journal of the National Cancer Institute, 2005, 97, 320-321.	6.3	16
75	Colorectal Cancer Susceptibility Loci in a Population-Based Study. American Journal of Pathology, 2010, 177, 2688-2693.	3.8	16
76	A Systematic Analysis of Interactions between Environmental Risk Factors and Genetic Variation in Susceptibility to Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1145-1153.	2.5	16
77	Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology, 2021, 31, 82-88.	2.5	15
78	Aspirin Rescues Wnt-Driven Stem-like Phenotype in Human Intestinal Organoids and Increases the Wnt Antagonist Dickkopf-1. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 465-489.	4.5	15
79	Thyroid Cancer Susceptibility and THRA1 and BAT-40 Repeats Polymorphisms. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 638-642.	2.5	13
80	Runs of Homozygosity in European Populations. American Journal of Human Genetics, 2008, 83, 658.	6.2	13
81	Bidirectional Mendelian randomisation analysis of the relationship between circulating vitamin D concentration and colorectal cancer risk. International Journal of Cancer, 2022, 150, 303-307.	5.1	13
82	Reply to Webb et al American Journal of Human Genetics, 2006, 79, 771.	6.2	12
83	Mutation frequency in coding and non-coding repeat sequences in mismatch repair deficient cells derived from normal human tissue. Oncogene, 2001, 20, 7464-7471.	5.9	11
84	Effects of common genetic variants associated with colorectal cancer risk on survival outcomes after diagnosis: A large populationâ€based cohort study. International Journal of Cancer, 2019, 145, 2427-2432.	5.1	11
85	Screening for exonic copy number mutations at MSH2 and MLH1 by MAPH. Familial Cancer, 2005, 4, 145-149.	1.9	10
86	MUTYH-Associated Polyposis and Colorectal Cancer. Surgical Oncology Clinics of North America, 2009, 18, 599-610.	1.5	10
87	Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer. PLoS ONE, 2013, 8, e63475.	2.5	10
88	Genome-wide scan of the effect of common nsSNPs on colorectal cancer survival outcome. British Journal of Cancer, 2018, 119, 988-993.	6.4	10
89	Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population. PLoS ONE, 2018, 13, e0193547.	2.5	10
90	Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model. Cancers, 2022, 14, 561.	3.7	9

SUSAN M FARRINGTON

#	Article	IF	CITATIONS
91	Exome Sequencing to Detect Rare Variants Associated With General Cognitive Ability: A Pilot Study. Twin Research and Human Genetics, 2015, 18, 117-125.	0.6	7
92	Correspondence: SEMA4A variation and risk of colorectal cancer. Nature Communications, 2016, 7, 10611.	12.8	7
93	Contrast-enhanced magnetomotive ultrasound imaging (CE-MMUS) for colorectal cancer staging: Assessment of sensitivity and resolution to detect alterations in tissue stiffness. , 2019, , .		7
94	Colorectal cancer risk variants rs10161980 and rs7495132 are associated with cancer survival outcome by a recessive mode of inheritance. International Journal of Cancer, 2021, 148, 2774-2778.	5.1	7
95	Differential genetic influences over colorectal cancer risk and gene expression in large bowel mucosa. International Journal of Cancer, 2021, 149, 1100-1108.	5.1	7
96	Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer. PLoS ONE, 2018, 13, e0199350.	2.5	6
97	Lack of an association between gallstone disease and bilirubin levels with risk of colorectal cancer: a Mendelian randomisation analysis. British Journal of Cancer, 2021, 124, 1169-1174.	6.4	6
98	Vitamin D treatment induces in vitro and ex vivo transcriptomic changes indicating antiâ€ŧumor effects. FASEB Journal, 2022, 36, e22082.	0.5	6
99	Head-to-Head Comparison of Family History of Colorectal Cancer and a Genetic Risk Score for Colorectal Cancer Risk Stratification. Clinical and Translational Gastroenterology, 2019, 10, e00106.	2.5	4
100	A Comprehensive Study of the Effect on Colorectal Cancer Survival of Common Germline Genetic Variation Previously Linked with Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1944-1946.	2.5	4
101	Phenome-wide association study (PheWAS) of colorectal cancer risk SNP effects on health outcomes in UK Biobank. British Journal of Cancer, 2022, 126, 822-830.	6.4	4
102	In vitro stability of APC gene sequences and the influence of DNA repair status. Mutagenesis, 2012, 27, 233-238.	2.6	3
103	Physical activity and colorectal cancer risk: a two-sample Mendelian randomisation study. Lancet, The, 2019, 394, S101.	13.7	3
104	Gene Co-Expression Network Analysis Identifies Vitamin D-Associated Gene Modules in Adult Normal Rectal Epithelium Following Supplementation. Frontiers in Genetics, 2021, 12, 783970.	2.3	3
105	Modelling of magnetic microbubbles to evaluate contrast enhanced magnetomotive ultrasound in lymph nodes $\hat{a} \in \hat{a}$ pre-clinical study. British Journal of Radiology, 2022, 95, 20211128.	2.2	2
106	The Search for Gene-Gene Interactions in Colorectal Cancer: Using HPC to Overcome Computational Barriers. , 2009, , .		1
107	Reply to F.J.S. Conway et al. Journal of Clinical Oncology, 2015, 33, 224-225.	1.6	1

7