
Chen Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572927/publications.pdf Version: 2024-02-01

Снем 7нц

#	Article	IF	CITATIONS
1	Intermolecular Radical Fluoroalkylative Olefination of Unactivated Alkenes. CCS Chemistry, 2022, 4, 1190-1198.	4.6	14
2	Radical trifunctionalization of hexenenitrile <i>via</i> remote cyano migration. Chemical Communications, 2022, 58, 1005-1008.	2.2	17
3	Electrophilic <i>N</i> -trifluoromethylthiophthalimide as a fluorinated reagent in the synthesis of acyl fluorides. Organic Chemistry Frontiers, 2022, 9, 342-346.	2.3	6
4	Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. Chinese Chemical Letters, 2022, 33, 4549-4558.	4.8	17
5	Redox-neutral manganese-catalyzed synthesis of 1-pyrrolines. Chemical Science, 2022, 13, 2669-2673.	3.7	15
6	Bioinspired desaturation of alcohols enabled by photoredox proton-coupled electron transfer and cobalt dual catalysis. Nature Communications, 2022, 13, 809.	5.8	26
7	Metalâ€Free Photoinduced Deformylative Minisciâ€Type Reaction. Advanced Synthesis and Catalysis, 2022, 364, 1200-1204.	2.1	13
8	Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer. Chinese Journal of Organic Chemistry, 2022, 42, 458.	0.6	17
9	Metal-free photo-induced heteroarylations of C–H and C–C bonds of alcohols by flow chemistry. Green Chemistry, 2022, 24, 4498-4503.	4.6	6
10	Combination of radical functional group migration (FGM) and hydrogen atom transfer (HAT). Trends in Chemistry, 2022, 4, 580-583.	4.4	11
11	Asymmetric Radical Cyclization of Alkenes by Stereospecific Homolytic Substitution of Sulfinamides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
12	Radical-Mediated Functionalization of Internal Alkenes: Synthesis of Multisubstituted Allylic and Homoallylic Azides. ACS Organic & Inorganic Au, 2022, 2, 392-395.	1.9	5
13	Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry. Nature Communications, 2022, 13, .	5.8	32
14	Reactivity in Nickelâ€Catalyzed Multiâ€component Sequential Reductive Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
15	Reductive Crossâ€Coupling of αâ€Oxy Halides Enabled by Thermal Catalysis, Photocatalysis, Electrocatalysis, or Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
16	Heterocyclization Reagents for Rapid Assembly of Nâ€Fused Heteroarenes from Alkenes. Angewandte Chemie, 2021, 133, 3758-3763.	1.6	3
17	Nickel atalyzed Câ€Heteroatom Cross oupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angewandte Chemie - International Edition, 2021, 60, 17810-17831.	7.2	144
18	Nickelâ€Catalyzed Câ€Heteroatom Crossâ€Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angewandte Chemie, 2021, 133, 17954-17975.	1.6	35

#	Article	IF	CITATIONS
19	Radical-Mediated Hetaryl Functionalization of Nonactivated Alkenes through Distal ipso-Migration of O- or S-Hetaryls. Synlett, 2021, 32, 401-405.	1.0	8
20	Heterocyclization Reagents for Rapid Assembly of Nâ€Fused Heteroarenes from Alkenes. Angewandte Chemie - International Edition, 2021, 60, 3714-3719.	7.2	29
21	A radical [3 + 2]-cycloaddition reaction for the synthesis of difluorocyclopentanones. Organic Chemistry Frontiers, 2021, 8, 3118-3122.	2.3	7
22	Photocatalytic intermolecular carboarylation of alkenes by selective C–O bond cleavage of diarylethers. Chemical Communications, 2021, 57, 9240-9243.	2.2	14
23	Radical-mediated sulfonyl alkynylation, allylation, and cyanation of propellane. Chemical Communications, 2021, 57, 6066-6069.	2.2	30
24	Iron-Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential. Chinese Journal of Organic Chemistry, 2021, 41, 2914.	0.6	0
25	Cluster Preface: Radicals – by Young Chinese Organic Chemists. Synlett, 2021, 32, 354-355.	1.0	0
26	Radical Carbosulfonylation of Propellane: Synthesis of Sulfonyl β-Keto-bicyclo[1,1,1]pentanes. Synthesis, 2021, 53, 3325-3332.	1.2	6
27	Redox-Neutral Cross-Coupling Amination with Weak <i>N-</i> Nucleophiles: Arylation of Anilines, Sulfonamides, Sulfoximines, Carbamates, and Imines via Nickelaelectrocatalysis. Jacs Au, 2021, 1, 1057-1065.	3.6	46
28	Alkene Difunctionalization Triggered by a Stabilized Allenyl Radical: Concomitant Installation of Two Unsaturated Câ^'C Bonds. Angewandte Chemie, 2021, 133, 20377-20381.	1.6	1
29	Alkene Difunctionalization Triggered by a Stabilized Allenyl Radical: Concomitant Installation of Two Unsaturated Câ^'C Bonds. Angewandte Chemie - International Edition, 2021, 60, 20215-20219.	7.2	26
30	Radical-mediated 1,2-Brook rearrangements. Chem Catalysis, 2021, 1, 250-252.	2.9	3
31	Catalyst-free, radical-mediated intermolecular 1,2-arylheteroarylation of alkenes by cleaving inert C-C bond. Science China Chemistry, 2021, 64, 1703-1708.	4.2	16
32	Radical heteroarylation of unactivated remote C(sp ³)–H bonds <i>via</i> intramolecular heteroaryl migration. Organic Chemistry Frontiers, 2021, 8, 6395-6399.	2.3	11
33	Radical-mediated rearrangements: past, present, and future. Chemical Society Reviews, 2021, 50, 11577-11613.	18.7	121
34	Mechanistic Understanding of Arylation vs Alkylation of Aliphatic C _{sp3} –H Bonds by Decatungstate–Nickel Catalysis. ACS Catalysis, 2021, 11, 13973-13982.	5.5	15
35	Advances in allylic and benzylic C–H bond functionalization enabled by metallaphotoredox catalysis. Chemical Communications, 2021, 58, 171-184.	2.2	32
36	Metal-free C–Se cross-coupling enabled by photoinduced inter-molecular charge transfer. Chemical Communications, 2021, 58, 96-99.	2.2	14

#	Article	IF	CITATIONS
37	Cascade Cross oupling of Dienes: Photoredox and Nickel Dual Catalysis. Angewandte Chemie, 2020, 132, 465-472.	1.6	6
38	Synthesis of Î ³ -lactams via trifluoromethylative aminocarbonylation of unactivated olefins. Tetrahedron Letters, 2020, 61, 151479.	0.7	5
39	Cascade Cross oupling of Dienes: Photoredox and Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2020, 59, 457-464.	7.2	50
40	Regioselective Hydroalkylation and Arylalkylation of Alkynes by Photoredox/Nickel Dual Catalysis: Application and Mechanism. Angewandte Chemie, 2020, 132, 5787-5795.	1.6	14
41	Regioselective Hydroalkylation and Arylalkylation of Alkynes by Photoredox/Nickel Dual Catalysis: Application and Mechanism. Angewandte Chemie - International Edition, 2020, 59, 5738-5746.	7.2	81
42	Synthesis of selenoether and thioether functionalized bicyclo[1.1.1]pentanes. Tetrahedron, 2020, 76, 131692.	1.0	13
43	Radical-Mediated Remote Functional Group Migration. Accounts of Chemical Research, 2020, 53, 1620-1636.	7.6	202
44	Radical-Mediated Distal Ipso-Migration of O/S-Containing Heteroaryls and DFT Studies for Migratory Aptitude. Organic Letters, 2020, 22, 5947-5952.	2.4	33
45	Metal-Free Radical-Mediated C(sp ³)–H Heteroarylation of Alkanes. Organic Letters, 2020, 22, 7450-7454.	2.4	48
46	Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C _{sp3} –H Bonds. Journal of the American Chemical Society, 2020, 142, 16942-16952.	6.6	69
47	Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chemical Science, 2020, 11, 4051-4064.	3.7	241
48	Radical Heteroarylalkylation of Alkenes via <scp>Threeâ€Component Dockingâ€Migration</scp> Thioetherification Cascade. Chinese Journal of Chemistry, 2020, 38, 803-806.	2.6	14
49	Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angewandte Chemie, 2020, 132, 8272-8279.	1.6	16
50	Radical-mediated C-C cleavage of unstrained cycloketones and DFT study for unusual regioselectivity. Nature Communications, 2020, 11, 672.	5.8	24
51	A practical access to fluoroalkylthio(seleno)-functionalized bicyclo[1.1.1]pentanes. Science China Chemistry, 2020, 63, 1025-1029.	4.2	41
52	Nickelâ€Catalyzed Chainâ€Walking Crossâ€Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angewandte Chemie - International Edition, 2020, 59, 6513-6519.	7.2	121
53	Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angewandte Chemie - International Edition, 2020, 59, 8195-8202.	7.2	71
54	Remote C(sp ³)–H vinylation <i>via</i> radical-mediated consecutive fission of C–H and C–C bonds. Organic Chemistry Frontiers, 2020, 7, 2981-2985.	2.3	10

#	Article	IF	CITATIONS
55	Merging Electrolysis and Nickel Catalysis in Redox Neutral Cross-Coupling Reactions: Experiment and Computation for Electrochemically Induced C–P and C–Se Bonds Formation. CCS Chemistry, 2020, 2, 179-190.	4.6	56
56	Radical Functionalization of Remote C(sp ³)–H Bonds Mediated by Unprotected Alcohols and Amides. CCS Chemistry, 2020, 2, 813-828.	4.6	54
57	Radical-Mediated Bromoalkylation of [1.1.1]propellane: Synthesis of Bromo-substituted Bicyclo[1.1.1]pentane Derivatives. Chinese Journal of Organic Chemistry, 2020, 40, 3431.	0.6	5
58	NFSI Radical Fluorination for Preparing Alkyl Fluorides. , 2020, , 455-460.		0
59	SelectFluor Radical Fluorination for Preparing Alkyl Fluorides. , 2020, , 566-574.		0
60	Synthesis of β-Difluoroalkyl Azides via 1,2-Azide Migration. Chinese Journal of Organic Chemistry, 2020, 40, 808.	0.6	0
61	Recent Advances in Radicalâ€Mediated C—C Bond Fragmentation of Nonâ€Strained Molecules. Chinese Journal of Chemistry, 2019, 37, 171-182.	2.6	103
62	Regioselective introduction of vinyl trifluoromethylthioether to remote unactivated C(sp3)—H bonds via radical translocation cascade. Science China Chemistry, 2019, 62, 1507-1511.	4.2	22
63	A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nature Catalysis, 2019, 2, 678-687.	16.1	123
64	Recent advances in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols. Chemical Communications, 2019, 55, 9747-9756.	2.2	154
65	Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angewandte Chemie, 2019, 131, 17810-17814.	1.6	20
66	Development of Robust 17(R),18(S)-Epoxyeicosatetraenoic Acid (17,18-EEQ) Analogs as Potential Clinical Antiarrhythmic Agents. Journal of Medicinal Chemistry, 2019, 62, 10124-10143.	2.9	13
67	Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angewandte Chemie - International Edition, 2019, 58, 17646-17650.	7.2	53
68	Radical-Mediated Heck-Type Alkylation: Stereoconvergent Synthesis of Functionalized Polyenes. Organic Letters, 2019, 21, 7568-7572.	2.4	13
69	Visible-light-induced consecutive C–C bond fragmentation and formation for the synthesis of elusive unsymmetric 1,8-dicarbonyl compounds. Chemical Communications, 2019, 55, 2368-2371.	2.2	59
70	Mechanistic insights into intermolecular cyclization of ring-fused benzocyclobutenols with alkynes catalyzed by [{lr(OMe)COD} ₂]. Organic Chemistry Frontiers, 2019, 6, 791-795.	2.3	4
71	Regioselective Sulfonylvinylation of the Unactivated C(sp ³)–H Bond via a C-Centered Radical-Mediated Hydrogen Atom Transfer (HAT) Process. Organic Letters, 2019, 21, 4837-4841.	2.4	38
72	Intramolecular nitration–aminocarbonylation of unactivated olefins: metal-free synthesis of γ-lactams. Chemical Communications, 2019, 55, 7796-7799.	2.2	23

#	Article	IF	CITATIONS
73	Practical, metal-free remote heteroarylation of amides <i>via</i> unactivated C(sp ³)–H bond functionalization. Chemical Science, 2019, 10, 6915-6919.	3.7	78
74	Nickel-catalyzed Suzuki–Miyaura cross-couplings of aldehydes. Nature Communications, 2019, 10, 1957.	5.8	58
75	Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chemical Science, 2019, 10, 4430-4435.	3.7	131
76	Cyanohydrin-Mediated Cyanation of Remote Unactivated C(sp ³)–H Bonds. Organic Letters, 2019, 21, 821-825.	2.4	42
77	Regioselective Vinylation of Remote Unactivated C(sp ³)â^'H Bonds: Access to Complex Fluoroalkylated Alkenes. Angewandte Chemie, 2019, 131, 1513-1517.	1.6	16
78	Oxidative Addition to Palladium(0) Made Easy through Photoexcited‣tate Metal Catalysis: Experiment and Computation. Angewandte Chemie - International Edition, 2019, 58, 3412-3416.	7.2	103
79	Visible-light-induced carbosulfonylation of unactivated alkenes via remote heteroaryl and oximino migration. Tetrahedron, 2019, 75, 1639-1646.	1.0	30
80	Regioselective Vinylation of Remote Unactivated C(sp ³)â^'H Bonds: Access to Complex Fluoroalkylated Alkenes. Angewandte Chemie - International Edition, 2019, 58, 1499-1503.	7.2	77
81	Sulfonyl Chlorides Mediated Alkynylation of Non-activated Alkenes via Distal Alkynyl Group Migration. Acta Chimica Sinica, 2019, 77, 922.	0.5	20
82	Annulation of Benzylic Alcohols with Alkynes for Rapid and Efficient Synthesis of Indenes and Spiroindenes. Chinese Journal of Organic Chemistry, 2019, 39, 223.	0.6	6
83	Radical-Type Difunctionalization of Alkenes with CO2. Acta Chimica Sinica, 2019, 77, 771.	0.5	0
84	Radical-mediated difunctionalization of unactivated alkenes through distal migration of functional groups. Tetrahedron Letters, 2018, 59, 1328-1336.	0.7	149
85	Recent Advances in Ringâ€Opening Functionalization of Cycloalkanols by C–C σâ€Bond Cleavage. Chemical Record, 2018, 18, 587-598.	2.9	123
86	Cross oupling of Sodium Sulfinates with Aryl, Heteroaryl, and Vinyl Halides by Nickel/Photoredox Dual Catalysis. Angewandte Chemie - International Edition, 2018, 57, 1371-1375.	7.2	162
87	Copper atalyzed Heteroarylsilylation of Unactivated Olefins through Distal Heteroaryl Migration. Chemistry - an Asian Journal, 2018, 13, 2453-2457.	1.7	44
88	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â^'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie - International Edition, 2018, 57, 1640-1644.	7.2	179
89	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â~'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie, 2018, 130, 1656-1660.	1.6	46
90	Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters. Organic Letters, 2018, 20, 385-388.	2.4	44

#	Article	IF	CITATIONS
91	Azidoheteroarylation of unactivated olefins through distal heteroaryl migration. Organic Chemistry Frontiers, 2018, 5, 1896-1899.	2.3	51
92	Cyanotrifluoromethylthiolation of unactivated dialkyl-substituted alkynes <i>via</i> cyano migration: synthesis of trifluoromethylthiolated acrylonitriles. Chemical Communications, 2018, 54, 6812-6815.	2.2	36
93	Rhodium-Catalyzed C–C Bond Olefination of Ring-Fused Benzocyclobutenols and Application in the Construction of Polycyclic Compounds. Synlett, 2018, 29, 731-735.	1.0	5
94	Distal Functional Group Migration for Visibleâ€light Induced Carboâ€difluoroalkylation/monofluoroalkylation of Unactivated Alkenes. Advanced Synthesis and Catalysis, 2018, 360, 744-750.	2.1	113
95	NFSI Radical Fluorination for Preparing Alkyl Fluorides. , 2018, , 1-7.		1
96	Efficient Docking–Migration Strategy for Selective Radical Difluoromethylation of Alkenes. Angewandte Chemie, 2018, 130, 17402-17406.	1.6	32
97	Efficient Docking–Migration Strategy for Selective Radical Difluoromethylation of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 17156-17160.	7.2	121
98	Phosphinoyl-functionalization of unactivated alkenes through phosphinoyl radical-triggered distal functional group migration. Organic Chemistry Frontiers, 2018, 5, 2370-2374.	2.3	45
99	Stereoselective Solid‧tate Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxaneâ€like MOFs. Angewandte Chemie - International Edition, 2018, 57, 12696-12701.	7.2	103
100	Metal-free alcohol-directed regioselective heteroarylation of remote unactivated C(sp3)–H bonds. Nature Communications, 2018, 9, 3343.	5.8	152
101	SelectFluor Radical Fluorination for Preparing Alkyl Fluorides. , 2018, , 1-9.		2
102	Visible light-promoted ring-opening functionalization of unstrained cycloalkanols <i>via</i> inert C–C bond scission. Chemical Science, 2018, 9, 5805-5809.	3.7	113
103	Difunctionalization of Unactivated Alkenes through SCF ₃ Radical-triggered Distal Functional Group Migration. Acta Chimica Sinica, 2018, 76, 951.	0.5	24
104	Chemo- and Regioselective Distal Heteroaryl <i>ipso</i> -Migration: A General Protocol for Heteroarylation of Unactivated Alkenes. Journal of the American Chemical Society, 2017, 139, 1388-1391.	6.6	241
105	Recent advances in radical-mediated fluorination through C–H and C–C bond cleavage. Science China Chemistry, 2017, 60, 214-222.	4.2	68
106	Efficient synthesis of multiply substituted butenolides from keto acids and terminal alkynes promoted by combined acids. Organic Chemistry Frontiers, 2017, 4, 1029-1033.	2.3	6
107	Synergistic Strategies of Cyano Migration and Photocatalysis for Difunctionalization of Unactivated Alkenes: Synthesis of Di―and Monoâ€Fluorinated Alkyl Nitriles. Advanced Synthesis and Catalysis, 2017, 359, 3052-3056.	2.1	76
108	Cyanotrifluoromethylthiolation of Unactivated Olefins through Intramolecular Cyano Migration. Advanced Synthesis and Catalysis, 2017, 359, 1959-1962.	2.1	64

#	Article	IF	CITATIONS
109	Catalytic Ester and Amide to Amine Interconversion: Nickelâ€Catalyzed Decarbonylative Amination of Esters and Amides by Câ°'O and Câ°'C Bond Activation. Angewandte Chemie - International Edition, 2017, 56, 4282-4285.	7.2	148
110	Merging Distal Alkynyl Migration and Photoredox Catalysis for Radical Trifluoromethylative Alkynylation of Unactivated Olefins. Angewandte Chemie, 2017, 129, 4616-4619.	1.6	49
111	Merging Distal Alkynyl Migration and Photoredox Catalysis for Radical Trifluoromethylative Alkynylation of Unactivated Olefins. Angewandte Chemie - International Edition, 2017, 56, 4545-4548.	7.2	169
112	Ring-opening selenation of cyclobutanols: synthesis of γ-selenylated alkyl ketones through C–C bond cleavage. Organic Chemistry Frontiers, 2017, 4, 427-430.	2.3	30
113	C–C Bond (Hetero)arylation of Ring-Fused Benzocyclobutenols and Application in the Assembly of Polycyclic Aromatic Hydrocarbons. Journal of Organic Chemistry, 2017, 82, 9133-9143.	1.7	17
114	Synthesis of Multiply Substituted Polycyclic Aromatic Hydrocarbons by Iridiumâ€Catalyzed Annulation of Ringâ€Fused Benzocyclobutenol with Alkyne through Câ^'C Bond Cleavage. Angewandte Chemie - International Edition, 2016, 55, 1143-1146.	7.2	73
115	Câ^'C Bondâ€Forming Strategy by Manganeseâ€Catalyzed Oxidative Ringâ€Opening Cyanation and Ethynylation of Cyclobutanol Derivatives. Angewandte Chemie - International Edition, 2016, 55, 2866-2869.	7.2	174
116	Combination of a Cyano Migration Strategy and Alkene Difunctionalization: The Elusive Selective Azidocyanation of Unactivated Olefins. Angewandte Chemie - International Edition, 2016, 55, 10821-10824.	7.2	184
117	Combination of a Cyano Migration Strategy and Alkene Difunctionalization: The Elusive Selective Azidocyanation of Unactivated Olefins. Angewandte Chemie, 2016, 128, 10979-10982.	1.6	45
118	Manganese-Promoted Ring-Opening Hydrazination of Cyclobutanols: Synthesis of Alkyl Hydrazines. Journal of Organic Chemistry, 2016, 81, 8043-8049.	1.7	49
119	Manganese-catalyzed ring-opening chlorination of cyclobutanols: regiospecific synthesis of γ-chloroketones. Organic Chemistry Frontiers, 2016, 3, 1467-1471.	2.3	43
120	Synthesis of Multiply Substituted Polycyclic Aromatic Hydrocarbons by Iridiumâ€Catalyzed Annulation of Ringâ€Fused Benzocyclobutenol with Alkyne through Câ^'C Bond Cleavage. Angewandte Chemie, 2016, 128, 1155-1158.	1.6	14
121	Câ^'C Bondâ€Forming Strategy by Manganeseâ€Catalyzed Oxidative Ringâ€Opening Cyanation and Ethynylation of Cyclobutanol Derivatives. Angewandte Chemie, 2016, 128, 2916-2919.	1.6	40
122	Manganese-catalyzed regiospecific sp ³ C–S bond formation through C–C bond cleavage of cyclobutanols. Chemical Communications, 2016, 52, 8160-8163.	2.2	56
123	Regiospecific synthesis of distally chlorinated ketones via C–C bond cleavage of cycloalkanols. Organic Chemistry Frontiers, 2016, 3, 227-232.	2.3	95
124	Synthesis of highly substituted \hat{I}^3 -hydroxybutenolides through the annulation of keto acids with alkynes and subsequent hydroxyl transposition. Chemical Communications, 2016, 52, 5269-5272.	2.2	28
125	Radical-Mediated Ring-Opening Functionalization of Cyclobutanols: A Shortcut to Î ³ -Substituted Ketones. Synlett, 2016, 27, 1139-1144.	1.0	31
126	Selectfluor–Bu ₄ NIâ€Mediated C(sp ³)–H Oxidation in Aqueous Media: Synthesis of Δ ² â€Isoxazolines from Oximes. European Journal of Organic Chemistry, 2015, 2015, 5084-5088.	1.2	30

#	Article	IF	CITATIONS
127	Manganeseâ€Catalyzed Oxidative Azidation of Cyclobutanols: Regiospecific Synthesis of Alkyl Azides by CC Bond Cleavage. Angewandte Chemie - International Edition, 2015, 54, 12692-12696.	7.2	185
128	Synergistic Acid-Promoted Synthesis of Highly Substituted Butenolides via the Annulation of Keto Acids and Tertiary Alcohols. Organic Letters, 2015, 17, 5710-5713.	2.4	26
129	Oximeâ€Mediated Oxychlorination and Oxybromination of Unactivated Olefins. European Journal of Organic Chemistry, 2015, 2015, 1419-1422.	1.2	35
130	Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 2015, 48, 388-398.	7.6	146
131	Silver-Catalyzed Ring-Opening Strategy for the Synthesis of β- and γ-Fluorinated Ketones. Journal of the American Chemical Society, 2015, 137, 3490-3493.	6.6	316
132	A facile and regioselective synthesis of 1-tetralones via silver-catalyzed ring expansion. Organic and Biomolecular Chemistry, 2015, 13, 7924-7927.	1.5	61
133	Synthesis of naked amino-pyrroloindoline via direct aminocyclization of tryptamine. Organic and Biomolecular Chemistry, 2015, 13, 5381-5384.	1.5	28
134	Asymmetric N-Heterocyclic Carbene Catalyzed Annulation of 2-Alkenylbenzothiazoles with α-Chloro Aldehydes. Synthesis, 2015, 47, 421-428.	1.2	11
135	QseC Inhibitors as an Antivirulence Approach for Gram-Negative Pathogens. MBio, 2014, 5, e02165.	1.8	110
136	A Simple Method for the Electrophilic Cyanation of Secondary Amines. Organic Letters, 2014, 16, 247-249.	2.4	26
137	Vanadium-catalyzed oxidative Strecker reaction: α-C–H cyanation of para-methoxyphenyl (PMP)-protected primary amines. Tetrahedron Letters, 2014, 55, 232-234.	0.7	23
138	Oxime-Mediated Facile Access to 5-Methylisoxazoles and Applications in the Synthesis of Valdecoxib and Oxacillin. Organic Letters, 2014, 16, 5266-5268.	2.4	49
139	Transition Metalâ€Free <i>ipso</i> â€Functionalization of Arylboronic Acids and Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 2395-2410.	2.1	81
140	Visible light-promoted metal-free sp ³ -C–H fluorination. Chemical Communications, 2014, 50, 11701-11704.	2.2	116
141	Visible Light-Promoted Metal-Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. Journal of the American Chemical Society, 2013, 135, 17494-17500.	6.6	471
142	Molecular iodine catalyzed transfer hydrogenation: reduction of aldimines, ketimines, and α-imino esters. Tetrahedron Letters, 2013, 54, 3977-3981.	0.7	16
143	Elusive Metal-Free Primary Amination of Arylboronic Acids: Synthetic Studies and Mechanism by Density Functional Theory. Journal of the American Chemical Society, 2012, 134, 18253-18256.	6.6	139
144	Rhodium catalyzed synthesis of isoindolinones via C–H activation of N-benzoylsulfonamides. Tetrahedron, 2012, 68, 9192-9199.	1.0	51

#	Article	IF	CITATIONS
145	Mild and Rapid Hydroxylation of Aryl/Heteroaryl Boronic Acids and Boronate Esters with <i>N</i> -Oxides. Organic Letters, 2012, 14, 3494-3497.	2.4	166
146	Amideâ€Directed Tandem CC/CN Bond Formation through CH Activation. Chemistry - an Asian Journal, 2012, 7, 1502-1514.	1.7	252
147	Rhodium catalyzed C–H olefination of N-benzoylsulfonamides with internal alkenes. Chemical Communications, 2012, 48, 1674-1676.	2.2	138
148	Transfer hydrogenation of imines with carboxyl-tailed benzothiazoline as readily removable hydrogen donor. Tetrahedron Letters, 2012, 53, 416-418.	0.7	20
149	<i>N</i> -Acylsulfonamide Assisted Tandem Câ^'H Olefination/Annulation: Synthesis of Isoindolinones. Organic Letters, 2011, 13, 1214-1217.	2.4	146
150	Benzothiazoline: The Surrogate of Hantzsch Ester. ChemCatChem, 2011, 3, 1850-1851.	1.8	28
151	Alternative Pathways for Heck Intermediates: Palladiumâ€Catalyzed Oxyarylation of Homoallylic Alcohols. Angewandte Chemie - International Edition, 2011, 50, 6626-6629.	7.2	44
152	Rhodium atalyzed Annulation of <i>N</i> â€Benzoylsulfonamide with Isocyanide through CH Activation. Chemistry - A European Journal, 2011, 17, 12591-12595.	1.7	142
153	Enantioselective Organocatalytic Transfer Hydrogenation of αâ€Imino Esters by Utilization of Benzothiazoline as Highly Efficient Reducing Agent. Advanced Synthesis and Catalysis, 2010, 352, 1846-1850.	2.1	92
154	Benzothiazoline: Highly Efficient Reducing Agent for the Enantioselective Organocatalytic Transfer Hydrogenation of Ketimines. Organic Letters, 2009, 11, 4180-4183.	2.4	161
155	An Efficient and Versatile Approach for Optical Resolution of <i>C</i> ₂ -Symmetric Axially Chiral Biaryl Dials. Synthesis of Enantiopure Biaryl-Derived Cyclic <i>trans</i> -1,2-Diols. Organic Letters, 2008, 10, 1243-1246.	2.4	38
156	Radical Heteroarylation of Alkenes and Alkanes via Heteroaryl ÂMigration. Synlett, 0, , .	1.0	2
157	Asymmetric Radical Cyclization of Alkenes by Stereospecific Homolytic Substitution of Sulfinamides. Angewandte Chemie, 0, , .	1.6	0