List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics. Annual Review of Earth and Planetary Sciences, 2006, 34, 157-191.	11.0	573
2	The fossilized size distribution of the main asteroid belt. Icarus, 2005, 175, 111-140.	2.5	479
3	Asteroids were born big. Icarus, 2009, 204, 558-573.	2.5	424
4	COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS. Astrophysical Journal, 2010, 713, 816-836.	4.5	422
5	Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 2005, 179, 63-94.	2.5	394
6	An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 2012, 485, 78-81.	27.8	345
7	STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS. Astronomical Journal, 2012, 144, 117.	4.7	277
8	Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 2009, 460, 364-366.	27.8	250
9	Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 2006, 439, 821-824.	27.8	249
10	The recent breakup of an asteroid in the main-belt region. Nature, 2002, 417, 720-721.	27.8	243
11	Evidence for asteroid space weathering from the Sloan Digital Sky Survey. Icarus, 2005, 173, 132-152.	2.5	211
12	LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK. Astronomical Journal, 2011, 142, 152.	4.7	204
13	CAPTURE OF TROJANS BY JUMPING JUPITER. Astrophysical Journal, 2013, 768, 45.	4.5	203
14	Stochastic Late Accretion to Earth, the Moon, and Mars. Science, 2010, 330, 1527-1530.	12.6	194
15	The timeline of the lunar bombardment: Revisited. Icarus, 2018, 305, 262-276.	2.5	186
16	FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE. Astronomical Journal, 2010, 140, 785-793.	4.7	185
17	The vector alignments of asteroid spins by thermal torques. Nature, 2003, 425, 147-151.	27.8	182
18	Capture of Irregular Satellites during Planetary Encounters. Astronomical Journal, 2007, 133, 1962-1976.	4.7	181

#	Article	IF	CITATIONS
19	Three-Body Mean Motion Resonances and the Chaotic Structure of the Asteroid Belt. Astronomical Journal, 1998, 116, 3029-3037.	4.7	173
20	Dynamical Evolution of the Early Solar System. Annual Review of Astronomy and Astrophysics, 2018, 56, 137-174.	24.3	173
21	Dynamical Spreading of Asteroid Families by the Yarkovsky Effect. Science, 2001, 294, 1693-1696.	12.6	172
22	Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus, 2007, 186, 498-516.	2.5	169
23	Numerous Weak Resonances Drive Asteroids toward Terrestrial Planets Orbits. Icarus, 1999, 139, 295-308.	2.5	162
24	Yarkovsky/YORP chronology of asteroid families. Icarus, 2006, 182, 118-142.	2.5	158
25	An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature, 2007, 449, 48-53.	27.8	156
26	Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus, 2018, 312, 181-207.	2.5	156
27	Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astronomy and Astrophysics, 2012, 546, A18.	5.1	156
28	Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 2012, 221, 544-559.	2.5	152
29	Recent Origin of the Solar System Dust Bands. Astrophysical Journal, 2003, 591, 486-497.	4.5	150
30	The Detection and Characterization of a Nontransiting Planet by Transit Timing Variations. Science, 2012, 336, 1133-1136.	12.6	150
31	EVIDENCE FOR SLOW MIGRATION OF NEPTUNE FROM THE INCLINATION DISTRIBUTION OF KUIPER BELT OBJECTS. Astronomical Journal, 2015, 150, 73.	4.7	149
32	YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?. Astrophysical Journal Letters, 2011, 742, L22.	8.3	146
33	THE HUNT FOR EXOMOONS WITH <i>KEPLER </i> (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT. Astrophysical Journal, 2012, 750, 115.	4.5	146
34	The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm?. Icarus, 2002, 157, 155-172.	2.5	139
35	Sources of cosmic dust in the Earth's atmosphere. Geophysical Research Letters, 2016, 43, 11979-11986.	4.0	138
36	KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE. Astrophysical Journal, 2013, 777, 3.	4.5	135

#	Article	IF	CITATIONS
37	Frequency modified fourier transform and its application to asteroids. Celestial Mechanics and Dynamical Astronomy, 1996, 65, 137-148.	1.4	133
38	DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS. Astrophysical Journal, 2011, 743, 129.	4.5	129
39	NEPTUNE'S ORBITAL MIGRATION WAS GRAINY, NOT SMOOTH. Astrophysical Journal, 2016, 825, 94.	4.5	124
40	TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS. Astrophysical Journal, 2014, 787, 132.	4.5	124
41	JUMPING NEPTUNE CAN EXPLAIN THE KUIPER BELT KERNEL. Astronomical Journal, 2015, 150, 68.	4.7	121
42	Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?. Icarus, 2007, 190, 203-223.	2.5	119
43	Mass and Orbit Determination from Transit Timing Variations of Exoplanets. Astrophysical Journal, 2008, 688, 636-646.	4.5	114
44	Constraining the cometary flux through the asteroid belt duringÂtheÂlate heavy bombardment. Astronomy and Astrophysics, 2013, 551, A117.	5.1	106
45	Origin and Evolution of Short-period Comets. Astrophysical Journal, 2017, 845, 27.	4.5	106
46	Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nature Astronomy, 2018, 2, 878-882.	10.1	104
47	Asteroidal source of L chondrite meteorites. Icarus, 2009, 200, 698-701.	2.5	103
48	THE IRREGULAR SATELLITES: THE MOST COLLISIONALLY EVOLVED POPULATIONS IN THE SOLAR SYSTEM. Astronomical Journal, 2010, 139, 994-1014.	4.7	103
49	Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 2019, 3, 808-812.	10.1	102
50	CAPTURE OF TRANS-NEPTUNIAN PLANETESIMALS IN THE MAIN ASTEROID BELT. Astronomical Journal, 2016, 152, 39.	4.7	100
51	Yarkovsky footprints in the Eos family. Icarus, 2006, 182, 92-117.	2.5	94
52	PAIRS OF ASTEROIDS PROBABLY OF A COMMON ORIGIN. Astronomical Journal, 2008, 136, 280-290.	4.7	92
53	OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS. Astrophysical Journal Letters, 2014, 795, L11.	8.3	91
54	A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature, 2006, 439, 295-297.	27.8	90

#	Article	IF	CITATIONS
55	CAPTURE OF IRREGULAR SATELLITES AT JUPITER. Astrophysical Journal, 2014, 784, 22.	4.5	89
56	The distribution of basaltic asteroids in the Main Belt. Icarus, 2008, 198, 77-90.	2.5	84
57	Constraining the Giant Planets' Initial Configuration from Their Evolution: Implications for the Timing of the Planetary Instability. Astronomical Journal, 2017, 153, 153.	4.7	84
58	Detection of the Yarkovsky effect for main-belt asteroids. Icarus, 2004, 170, 324-342.	2.5	83
59	Physical properties of asteroid dust bands and their sources. Icarus, 2006, 181, 107-144.	2.5	81
60	THE HUNT FOR EXOMOONS WITH <i>KEPLER </i> (HEK). V. A SURVEY OF 41 PLANETARY CANDIDATES FOR EXOMOONS. Astrophysical Journal, 2015, 813, 14.	4.5	80
61	THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL. Astronomical Journal, 2015, 150, 186.	4.7	80
62	New Candidates for Recent Asteroid Breakups. Astronomical Journal, 2006, 132, 1950-1958.	4.7	79
63	THE HUNT FOR EXOMOONS WITH KEPLER (HEK). II. ANALYSIS OF SEVEN VIABLE SATELLITE-HOSTING PLANET CANDIDATES. Astrophysical Journal, 2013, 770, 101.	4.5	79
64	THE HUNT FOR EXOMOONS WITH <i>KEPLER</i> (HEK). IV. A SEARCH FOR MOONS AROUND EIGHT M DWARFS. Astrophysical Journal, 2014, 784, 28.	4.5	79
65	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	12.6	79
66	Fugitives from the Vesta family. Icarus, 2008, 193, 85-95.	2.5	78
67	Escape of asteroids from the main belt. Astronomy and Astrophysics, 2017, 598, A52.	5.1	77
68	On the Asteroidal Population of the First-Order Jovian Resonances. Icarus, 1997, 130, 247-258.	2.5	76
69	Origin of the Near-Ecliptic Circumsolar Dust Band. Astrophysical Journal, 2008, 679, L143-L146.	4.5	76
70	The Breakup of a Main-Belt Asteroid 450 Thousand Years Ago. Science, 2006, 312, 1490-1490.	12.6	71
71	Constraining the primordial orbits of the terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3417-3427.	4.4	71
72	THE EFFECT OF CONJUNCTIONS ON THE TRANSIT TIMING VARIATIONS OF EXOPLANETS. Astrophysical Journal, 2014, 790, 58.	4.5	70

#	Article	IF	CITATIONS
73	Modeling the Historical Flux of Planetary Impactors. Astronomical Journal, 2017, 153, 103.	4.7	70
74	An Analytic Model of Three-Body Mean Motion Resonances. Celestial Mechanics and Dynamical Astronomy, 1998, 71, 243-271.	1.4	69
75	DYNAMICAL MODEL FOR THE TOROIDAL SPORADIC METEORS. Astrophysical Journal, 2014, 789, 25.	4.5	69
76	An age–colour relationship for main-belt S-complex asteroids. Nature, 2004, 429, 275-277.	27.8	68
77	On the V-type asteroids outside the Vesta family. Astronomy and Astrophysics, 2005, 441, 819-829.	5.1	68
78	V-type asteroids in the middle main belt. Icarus, 2008, 194, 125-136.	2.5	64
79	THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET. Astrophysical Journal, 2013, 777, 134.	4.5	64
80	Karin cluster formation by asteroid impact. Icarus, 2006, 183, 296-311.	2.5	63
81	On the size and velocity distribution of cosmic dust particles entering the atmosphere. Geophysical Research Letters, 2015, 42, 6518-6525.	4.0	63
82	All planetesimals born near the Kuiper belt formed as binaries. Nature Astronomy, 2017, 1, .	10.1	63
83	Orbital evolution of small binary asteroids. Icarus, 2010, 207, 732-743.	2.5	62
84	TILTING JUPITER (A BIT) AND SATURN (A LOT) DURING PLANETARY MIGRATION. Astrophysical Journal, 2015, 806, 143.	4.5	62
85	Mean Motion Resonances in the Transneptunian Region Part II: The 1 : 2, 3 : 4, and Weaker Resonances. Icarus, 2001, 150, 104-123.	2.5	60
86	Analysis of the Hungaria asteroid population. Icarus, 2009, 204, 172-182.	2.5	58
87	DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS. Astrophysical Journal, 2011, 743, 37.	4.5	58
88	CHAOTIC CAPTURE OF NEPTUNE TROJANS. Astronomical Journal, 2009, 137, 5003-5011.	4.7	57
89	ORBITAL PERTURBATIONS OF THE GALILEAN SATELLITES DURING PLANETARY ENCOUNTERS. Astronomical Journal, 2014, 148, 25.	4.7	57
90	Origin and Evolution of Long-period Comets. Astronomical Journal, 2019, 157, 181.	4.7	57

#	Article	IF	CITATIONS
91	Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans. Icarus, 2009, 202, 310-315.	2.5	55
92	Cosmic dust fluxes in the atmospheres of Earth, Mars, and Venus. Icarus, 2020, 335, 113395.	2.5	53
93	Olivine-dominated asteroids: Mineralogy and origin. Icarus, 2014, 228, 288-300.	2.5	52
94	DYNAMICS AND TRANSIT VARIATIONS OF RESONANT EXOPLANETS. Astrophysical Journal, 2016, 823, 72.	4.5	51
95	Identification and Dynamical Properties of Asteroid Families. , 2015, , .		51
96	OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING IN THE KUIPER BELT. Astronomical Journal, 2011, 141, 159.	4.7	50
97	A multidomain approach to asteroid families' identification. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2075-2096.	4.4	50
98	Mean Motion Resonances in the Trans-neptunian Region. Icarus, 2000, 148, 282-300.	2.5	49
99	Do planetary encounters reset surfaces of near Earth asteroids?. Icarus, 2010, 209, 510-519.	2.5	49
100	Meteoroids at the Moon: Orbital Properties, Surface Vaporization, and Impact Ejecta Production. Journal of Geophysical Research E: Planets, 2019, 124, 752-778.	3.6	49
101	JUMPING JUPITER CAN EXPLAIN MERCURY'S ORBIT. Astrophysical Journal Letters, 2016, 820, L30.	8.3	48
102	Express delivery of fossil meteorites from the inner asteroid belt to Sweden. Icarus, 2007, 188, 400-413.	2.5	44
103	Almahata Sitta (=asteroid 2008 TC ₃) and the search for the ureilite parent body. Meteoritics and Planetary Science, 2010, 45, 1590-1617.	1.6	44
104	Kuiper belt: Formation and evolution. , 2020, , 25-59.		44
105	Early dynamical instabilities in the giant planet systems. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3494-3500.	4.4	43
106	Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?. Icarus, 2016, 272, 114-124.	2.5	43
107	The peculiar case of the Agnia asteroid family. Icarus, 2006, 183, 349-361.	2.5	42
108	EXCITATION OF THE ORBITAL INCLINATION OF IAPETUS DURING PLANETARY ENCOUNTERS. Astronomical Journal, 2014, 148, 52.	4.7	42

#	Article	IF	CITATIONS
109	PHOTO-DYNAMICAL ANALYSIS OF THREE KEPLER OBJECTS OF INTEREST WITH SIGNIFICANT TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2014, 790, 31.	4.5	39
110	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	4.5	39
111	Binary survival in the outer solar system. Icarus, 2019, 331, 49-61.	2.5	39
112	FAST INVERSION METHOD FOR DETERMINATION OF PLANETARY PARAMETERS FROM TRANSIT TIMING VARIATIONS. Astrophysical Journal Letters, 2010, 709, L44-L48.	8.3	37
113	THE ORBITAL DISTRIBUTION OF TRANS-NEPTUNIAN OBJECTS BEYOND 50 au. Astrophysical Journal Letters, 2016, 827, L35.	8.3	37
114	Constraints on the original ejection velocity fields of asteroid families. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1332-1338.	4.4	37
115	Using the youngest asteroid clusters to constrain the space weathering and gardening rate on S-complex asteroids. Icarus, 2010, 208, 758-772.	2.5	36
116	Mutual orbit orientations of transneptunian binaries. Icarus, 2019, 334, 62-78.	2.5	35
117	The Role of Early Giant-planet Instability in Terrestrial Planet Formation. Astronomical Journal, 2021, 161, 50.	4.7	35
118	RADAR DETECTABILITY STUDIES OF SLOW AND SMALL ZODIACAL DUST CLOUD PARTICLES. I. THE CASE OF ARECIBO 430 MHz METEOR HEAD ECHO OBSERVATIONS. Astrophysical Journal, 2014, 796, 41.	4.5	33
119	Forming the Flora Family: Implications for the Near-Earth Asteroid Population and Large Terrestrial Planet Impactors. Astronomical Journal, 2017, 153, 172.	4.7	33
120	Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles. III. The Role of Sodium and the Head Echo Size on the Probability of Detection. Astrophysical Journal, 2017, 843, 1.	4.5	33
121	Masses of Kepler-46b, c from Transit Timing Variations. Astronomical Journal, 2017, 153, 198.	4.7	32
122	The shallow magnitude distribution of asteroid families. Icarus, 2003, 162, 328-336.	2.5	31
123	Redetermination of the space weathering rate using spectra of lannini asteroid family members. Icarus, 2008, 195, 663-673.	2.5	31
124	Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere. Geophysical Research Letters, 2015, 42, 169-175.	4.0	31
125	The young Datura asteroid family. Astronomy and Astrophysics, 2017, 598, A91.	5.1	31
126	THE COMMON ROOTS OF ASTEROIDS (6070) RHEINLAND AND (54827) 2001 NQ8. Astronomical Journal, 2009, 137, 111-117.	4.7	30

#	Article	IF	CITATIONS
127	The Meteoroid Input Function and predictions of mid-latitude meteor observations by the MU radar. Icarus, 2013, 223, 444-459.	2.5	30
128	Visible spectroscopy of extremely young asteroid families. Astronomy and Astrophysics, 2008, 486, L9-L12.	5.1	29
129	Checking the compatibility of the cold Kuiper belt with a planetary instability migration model. Icarus, 2018, 306, 319-327.	2.5	28
130	A re-assessment of the Kuiper belt size distribution for sub-kilometer objects, revealing collisional equilibrium at small sizes. Icarus, 2021, 356, 114256.	2.5	28
131	Modeling close encounters with massive asteroids: a Markovian approach. Astronomy and Astrophysics, 2007, 465, 315-330.	5.1	27
132	A resonant pair of warm giant planets revealed by TESS. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4980-4986.	4.4	27
133	Datura family: the 2009 update. Astronomy and Astrophysics, 2009, 507, 495-504.	5.1	27
134	Öpik-type collision probability for high-inclination orbits. Icarus, 2012, 219, 150-160.	2.5	26
135	OSSOS XX: The Meaning of Kuiper Belt Colors. Astronomical Journal, 2020, 160, 46.	4.7	26
136	Constraining the Ratio of Micrometeoroids From Short―and Longâ€Period Comets at 1ÂAU From LADEE Observations of the Lunar Dust Cloud. Geophysical Research Letters, 2018, 45, 1713-1722.	4.0	24
137	Efficient Lie-Poisson Integrator for Secular Spin Dynamics of Rigid Bodies. Astronomical Journal, 2005, 130, 1267-1277.	4.7	23
138	DETECTION OF THE YORP EFFECT FOR SMALL ASTEROIDS IN THE KARIN CLUSTER. Astronomical Journal, 2016, 151, 164.	4.7	22
139	Dynamical dispersal of primordial asteroid families. Icarus, 2016, 266, 142-151.	2.5	22
140	Binary Planetesimal Formation from Gravitationally Collapsing Pebble Clouds. Planetary Science Journal, 2021, 2, 27.	3.6	21
141	Hungaria asteroid family as the source of aubrite meteorites. Icarus, 2014, 239, 154-159.	2.5	20
142	Yarkovsky origin of the unstable asteroids in the 2/1 mean motion resonance with Jupiter. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1437-1455.	4.4	19
143	Hektor – an exceptional D-type family among Jovian Trojans. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2319-2332.	4.4	19
144	Detection of the Yarkovsky effect for C-type asteroids in the Veritas family. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4400-4413.	4.4	19

#	Article	IF	CITATIONS
145	OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132.	4.7	19
146	Evolution of Dust Trails into Bands. Astrophysical Journal, 2008, 672, 696-712.	4.5	18
147	COLLISIONALLY BORN FAMILY ABOUT 87 SYLVIA. Astronomical Journal, 2010, 139, 2148-2158.	4.7	18
148	HALF-BROTHERS IN THE SCHULHOF FAMILY?. Astronomical Journal, 2011, 142, 26.	4.7	18
149	Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nature Astronomy, 2021, 5, 898-902.	10.1	18
150	Candidates for Asteroid Dust Trails. Astronomical Journal, 2006, 132, 582-595.	4.7	17
151	Footprints of a possible Ceres asteroid paleo-family. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1117-1126.	4.4	17
152	Bi-lobed Shape of Comet 67P from a Collapsed Binary. Astronomical Journal, 2018, 155, 246.	4.7	17
153	Evolution of the Earth's atmosphere during Late Veneer accretion. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5334-5362.	4.4	17
154	Stability of Jovian Trojans and their collisional families. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4085-4097.	4.4	17
155	Asteroid families. Proceedings of the International Astronomical Union, 2005, 1, 289-299.	0.0	16
156	Proper Elements and Secular Resonances for Irregular Satellites. Astronomical Journal, 2007, 133, 2537-2558.	4.7	16
157	Dynamical capture in the Pluto–Charon system. Celestial Mechanics and Dynamical Astronomy, 2012, 114, 341-352.	1.4	16
158	Physical characterization of the Karin family. Astronomy and Astrophysics, 2006, 460, 945-951.	5.1	15
159	RADAR DETECTABILITY STUDIES OF SLOW AND SMALL ZODIACAL DUST CLOUD PARTICLES. II. A STUDY OF THREE RADARS WITH DIFFERENT SENSITIVITY. Astrophysical Journal, 2015, 807, 13.	4.5	15
160	Neptune trojan formation during planetary instability and migration. Astronomy and Astrophysics, 2016, 592, A146.	5.1	15
161	Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nature Geoscience, 2021, 14, 827-831.	12.9	15
162	Thermal Processing of Jupiter-family Comets during Their Chaotic Orbital Evolution. Astrophysical Journal, 2022, 928, 43.	4.5	15

#	Article	IF	CITATIONS
163	Towards a general model of space weathering of S-complex asteroids and ordinary chondrites. Astronomy and Astrophysics, 2007, 464, 1139-1146.	5.1	14
164	Scattering V-type asteroids during the giant planet instability: a step for Jupiter, a leap for basalt. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1236-1244.	4.4	14
165	Trans-Neptunian binaries (2018). , 2020, , 205-224.		14
166	Eccentric Early Migration of Neptune. Astrophysical Journal Letters, 2021, 908, L47.	8.3	13
167	A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astronomical Journal, 2021, 162, 283.	4.7	13
168	Characterizing the original ejection velocity field of the Koronis family. Icarus, 2016, 271, 57-66.	2.5	12
169	TOI-216: Resonant Constraints on Planet Migration. Astrophysical Journal, 2022, 925, 38.	4.5	12
170	Young Asteroid 832 Karin shows no rotational spectral variations. Icarus, 2007, 191, 323-329.	2.5	11
171	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	4.5	11
172	THE SCHULHOF FAMILY: SOLVING THE AGE PUZZLE. Astronomical Journal, 2016, 151, 56.	4.7	10
173	Can a jumping-Jupiter trigger the Moon's formation impact?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 539-547.	4.4	10
174	Dynamical Origin and Terrestrial Impact Flux of Large Near-Earth Asteroids. Astronomical Journal, 2018, 155, 42.	4.7	9
175	Very Slow Rotators from Tidally Synchronized Binaries. Astrophysical Journal Letters, 2020, 893, L16.	8.3	9
176	Dark primitive asteroids account for a large share of K/Pg-scale impacts on the Earth. Icarus, 2021, 368, 114621.	2.5	9
177	Modeling the Chronologies and Size Distributions of Ceres and Vesta Craters. Astronomical Journal, 2020, 160, 110.	4.7	9
178	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
179	HDÂ28109 hosts a trio of transiting Neptunian planets including a near-resonant pair, confirmed by ASTEP from Antarctica. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1328-1345.	4.4	9
180	Spectra of asteroid families in support of Gaia. Planetary and Space Science, 2012, 73, 95-97.	1.7	8

#	Article	IF	CITATIONS
181	Planetary chaos and the (In)stability of Hungaria asteroids. Icarus, 2018, 304, 9-13.	2.5	8
182	Modeling the Altitude Distribution of Meteor Head Echoes Observed with HPLA Radars: Implications for the Radar Detectability of Meteoroid Populations. Astronomical Journal, 2019, 157, 179.	4.7	8
183	The Formation of Bilobate Comet Shapes through Sublimative Torques. Planetary Science Journal, 2021, 2, 14.	3.6	8
184	CO oxidation and O2 removal on meteoric material in Venus' atmosphere. Icarus, 2017, 296, 150-162.	2.5	7
185	On the age of the Nele asteroid family. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1308-1317.	4.4	7
186	Astrocladistics of the Jovian Trojan Swarms. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1571-1608.	4.4	7
187	Migration of gap-opening planets in 3D stellar-irradiated accretion disks. Astronomy and Astrophysics, 2020, 642, A219.	5.1	7
188	The young Adelaide family: Possible sibling to Datura?. Astronomy and Astrophysics, 2021, 649, A115.	5.1	6
189	The Stability Boundary of the Distant Scattered Disk. Astrophysical Journal, 2021, 920, 148.	4.5	6
190	Superparticle Method for Simulating Collisions. Astrophysical Journal, 2020, 895, 63.	4.5	5
191	A super-Earth and a mini-Neptune around Kepler-59. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5238-5247.	4.4	5
192	Col-OSSOS: The Distinct Color Distribution of Single and Binary Cold Classical KBOs. Planetary Science Journal, 2021, 2, 90.	3.6	5
193	The young Hobson family: Possible binary parent body and low-velocity dispersal. Astronomy and Astrophysics, 2021, 654, A75.	5.1	5
194	Dynamical Implantation of Blue Binaries in the Cold Classical Kuiper Belt. Astronomical Journal, 2022, 163, 137.	4.7	5
195	Binary Planet Formation by Gas-assisted Encounters of Planetary Embryos. Astrophysical Journal, 2018, 868, 145.	4.5	4
196	Masses of the Kepler-419 planets from transit timing variations analysis. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4965-4971.	4.4	4
197	A pair of Jovian Trojans at the L4 Lagrange point. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3630-3649.	4.4	4
198	Clarissa Family Age from the Yarkovsky Effect Chronology. Astronomical Journal, 2020, 160, 127.	4.7	4

#	Article	IF	CITATIONS
199	Exogenous delivery of water to Mercury. Icarus, 2022, 383, 114980.	2.5	4
200	How to find a planet from transit variations. New Astronomy Reviews, 2019, 84, 101507.	12.8	3
201	Effects of protoplanetary nebula on orbital dynamics of planetesimals in the outer Solar system. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	1.4	3
202	Influence of Neptune's Migration Parameters on the Inclination Distribution of Kuiper Belt Objects (KBOs). Research Notes of the AAS, 2020, 4, 212.	0.7	3
203	<scp>isymba</scp> : a symplectic massive bodies integrator with planets interpolation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4858-4868.	4.4	3
204	Col-OSSOS: Probing Ice Line/Color Transitions within the Kuiper Belt's Progenitor Populations. Planetary Science Journal, 2022, 3, 9.	3.6	3
205	Space weathering and tidal effects among near-Earth objects. Proceedings of the International Astronomical Union, 2006, 2, 233-238.	0.0	1
206	The population of asteroids in the 2:1 mean motion resonance with Jupiter revised. Proceedings of the International Astronomical Union, 2004, 2004, 179-186.	0.0	0
207	Accidental investigation. Nature, 2010, 467, 792-793.	27.8	0