Simon A Wilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572328/publications.pdf Version: 2024-02-01

	807	1413
51,374	118	221
citations	h-index	g-index
338	338	7699
docs citations	times ranked	citing authors
	citations 338	51,374 118 citations h-index 338 338

#	Article	lF	CITATIONS
1	Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 2005, 136, 177-202.	1.2	2,147
2	Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research, 2001, 107, 45-73.	1.2	1,657
3	Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001, 409, 175-178.	13.7	1,505
4	Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 2002, 59, 125-162.	4.0	1,388
5	Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 2011, 41, 1-30.	1.0	1,343
6	Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 2005, 233, 103-119.	1.8	1,260
7	A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 2002, 187, 143-173.	1.4	1,114
8	A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 2004, 67, 91-123.	4.0	1,093
9	Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 2012, 222-223, 55-76.	1.2	806
10	Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328, 89-113.	0.9	613
11	Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 2003, 66, 241-273.	0.6	578
12	Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 2000, 103, 55-88.	1.2	566
13	Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 2005, 24, 577-595.	1.0	551
14	SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 2006, 149, 249-271.	1.2	540
15	Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2006, 246, 336-352.	1.8	537
16	Development of the North China Craton During the Late Archaean and its Final Amalgamation at 1.8 Ga: Some Speculations on its Position Within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 2002, 5, 85-94.	3.0	535
17	A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 2006, 89, 89-106.	0.6	483
18	Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics, 2000, 328, 157-182.	0.9	471

#	Article	IF	CITATIONS
19	Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 2005, 24, 523-545.	1.0	471
20	Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 2014, 7, 219-223.	5.4	451
21	Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221, 127-156.	1.4	439
22	Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions To Mineralogy and Petrology, 2006, 153, 177-190.	1.2	434
23	Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology. Precambrian Research, 2007, 159, 178-196.	1.2	432
24	Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 2019, 47, 173-195.	4.6	428
25	The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 2013, 23, 1365-1377.	3.0	424
26	Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 2010, 276, 144-165.	1.4	419
27	High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 2001, 42, 1141-1170.	1.1	417
28	Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 2010, 177, 266-276.	1.2	414
29	Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 2010, 296, 45-56.	1.8	412
30	The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 2009, 478, 230-246.	0.9	411
31	The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 2007, 16, 156-172.	0.5	409
32	Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research, 2006, 146, 45-67.	1.2	402
33	SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. Numerische Mathematik, 2002, 302, 191-226.	0.7	400
34	A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geology Reviews, 2003, 23, 125-152.	1.1	390
35	The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 2007, 30, 542-556.	1.0	386
36	A cool early Earth. Geology, 2002, 30, 351.	2.0	381

#	Article	IF	CITATIONS
37	Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 2003, 67, 191-204.	0.6	371
38	Ti-in-zircon thermometry: applications and limitations. Contributions To Mineralogy and Petrology, 2008, 156, 197-215.	1.2	371
39	Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction — A review of the evidence. Tectonophysics, 2015, 662, 345-362.	0.9	356
40	Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology, 2005, 214, 99-125.	1.4	355
41	Mesozoic decratonization of the North China block. Geology, 2008, 36, 467.	2.0	341
42	SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 2008, 160, 213-226.	1.2	339
43	Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Research, 2003, 6, 417-434.	3.0	335
44	Magmatic Î′18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 2005, 235, 663-681.	1.8	331
45	SHRIMP U–Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Research, 2002, 113, 1-18.	1.2	313
46	Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 2006, 146, 138-164.	1.2	310
47	Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Research, 2008, 167, 125-149.	1.2	310
48	Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review, 2011, 53, 1331-1356.	1.1	296
49	Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research, 2006, 148, 205-224.	1.2	295
50	Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 1999, 310, 37-53.	0.9	290
51	Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 2005, 24, 597-613.	1.0	286
52	Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high I´ 18 O continental crust and oceans in the Early Archean. Geochimica Et Cosmochimica Acta, 2001, 65, 4215-4229.	1.6	284
53	Extension of a newly identified 500Ma metamorphic terrane in North East China: further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 2000, 328, 115-130.	0.9	277
54	Late Pan-African magmatism in northeastern China: SHRIMP U–Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 2003, 122, 311-327.	1.2	274

#	Article	IF	CITATIONS
55	Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos, 2008, 102, 138-157.	0.6	273
56	Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 2008, 249, 262-281.	1.4	271
57	SHRIMP U-Pb zircon geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Numerische Mathematik, 2008, 308, 270-303.	0.7	266
58	Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 2018, 186, 76-93.	4.0	253
59	New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Numerische Mathematik, 2008, 308, 200-231.	0.7	252
60	Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31, 817.	2.0	251
61	Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 2012, 146-147, 112-127.	0.6	240
62	Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 2009, 50, 1857-1898.	1.1	237
63	Thermal evolution of two textural types of mafic granulites in the North China craton: evidence for both mantle plume and collisional tectonics. Geological Magazine, 1999, 136, 223-240.	0.9	236
64	Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Research, 2011, 187, 1-14.	1.2	234
65	Further evidence for â^¼1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U–Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research, 2006, 9, 189-197.	3.0	231
66	Deformation history of the Hengshan Complex: Implications for the tectonic evolution of the Trans-North China Orogen. Journal of Structural Geology, 2007, 29, 933-949.	1.0	231
67	Polyphase deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U–Pb zircon ages and tectonic implications. Journal of Structural Geology, 2009, 31, 177-193.	1.0	231
68	Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 2007, 48, 1973-1997.	1.1	227
69	Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics, 2014, 33, 302-329.	1.3	217
70	In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chemical Geology, 2009, 264, 24-42.	1.4	214
71	Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 2014, 33, 2444-2466.	1.3	213
72	Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 2007, 242, 155-175.	1.4	210

#	Article	IF	CITATIONS
73	Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen. Geological Magazine, 2007, 144, 753-775.	0.9	209
74	Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U–Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 2010, 37, 140-153.	1.0	206
75	Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 2010, 119, 269-288.	0.6	205
76	The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 2009, 261, 155-171.	1.4	196
77	Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Bulletin of the Geological Society of America, 2007, 119, 1405-1414.	1.6	193
78	Combined U–Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 2009, 261, 140-154.	1.4	191
79	The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 2010, 120, 309-326.	0.6	190
80	Deformation history of the Hengshan–Wutai–Fuping Complexes: Implications for the evolution of the Trans-North China Orogen. Gondwana Research, 2010, 18, 611-631.	3.0	189
81	Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China. Island Arc, 2004, 13, 484-505.	0.5	188
82	Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica Et Cosmochimica Acta, 2004, 68, 4469-4483.	1.6	188
83	Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics, 2011, 499, 105-117.	0.9	186
84	High-pressure mafic granulites in the Trans-North China Orogen: Tectonic significance and age. Gondwana Research, 2006, 9, 349-362.	3.0	184
85	Geochronology and petrogenesis of the post-orogenic Cu–Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 2004, 23, 781-797.	1.0	180
86	Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust. Earth and Planetary Science Letters, 2008, 272, 666-676.	1.8	178
87	Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 2014, 200-201, 157-168.	0.6	177
88	Implications based on the first SHRIMP U–Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 2006, 251, 365-379.	1.8	173
89	Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology, 2007, 238, 232-248.	1.4	172
90	UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochimica Et Cosmochimica Acta, 2005, 69, 4333-4348.	1.6	171

#	Article	IF	CITATIONS
91	Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 2010, 290, 481-492.	1.8	171
92	Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576Ma) magmatism. Precambrian Research, 2004, 135, 251-279.	1.2	168
93	Growth of the Greater Indian Landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone. Gondwana Research, 2012, 22, 54-72.	3.0	167
94	A > 1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics, 2011, 509, 280-292.	0.9	165
95	A MORB-arc basalt–adakite association in the 2.5 Ga Wutai greenstone belt: late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 2004, 131, 323-343.	1.2	164
96	Composite nature of the North China Granulite-Facies Belt: Tectonothermal and geochronological constraints. Gondwana Research, 2006, 9, 337-348.	3.0	163
97	Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium Deposita, 2003, 38, 141-153.	1.7	158
98	Correlated microanalysis of zircon: Trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900Ma detrital grains. Geochimica Et Cosmochimica Acta, 2006, 70, 5601-5616.	1.6	158
99	SHRIMP U–Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 2008, 160, 323-340.	1.2	158
100	Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 2013, 126, 206-234.	4.0	156
101	Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi–Heiani Suture, South Eastern Desert of Egypt. Gondwana Research, 2010, 18, 583-595.	3.0	152
102	Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology, 2013, 41, 291-294.	2.0	152
103	Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma?. Journal of Geodynamics, 2010, 50, 300-317.	0.7	151
104	Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal of the Geological Society, 2008, 165, 661-674.	0.9	144
105	A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 2004, 23, 731-744.	1.0	140
106	Tectonic setting and significance of 2.3–2.1Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic–ultramafic intrusion in the Hengshan–Wutai–Fuping area. Precambrian Research, 2010, 178, 27-42.	1.2	139
107	Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China Series D: Earth Sciences, 2003, 46, 23.	0.9	133
108	Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield: an Archaean to Palaeoproterozoic link. Precambrian Research, 2003, 122, 201-233.	1.2	132

#	Article	IF	CITATIONS
109	Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 2005, 222, 200-231.	1.4	131
110	First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan: Further evidence for Palaeoproterozoic amalgamation of North China Craton. Science Bulletin, 2004, 49, 83-90.	1.7	126
111	Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 2016, 261, 5-45.	0.6	126
112	U-Pb Zircon and Sm-Nd isotopic study of the huangtuling granulite, dabie-sulu belt, China: Implication for the paleoproterozoic tectonic history of the yangtze craton. Numerische Mathematik, 2008, 308, 469-483.	0.7	125
113	Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology, 2012, 328, 149-167.	1.4	125
114	Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research, 2012, 222-223, 290-311.	1.2	125
115	Significance of SHRIMP U-Pb dating of the Imperial Porphyry and associated Dokhan Volcanics, Gebel Dokhan, north Eastern Desert, Egypt. Journal of African Earth Sciences, 2000, 31, 403-413.	0.9	124
116	Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen: Implications for tectonic transformation in the Early Paleoproterozoic. Lithos, 2012, 134-135, 236-252.	0.6	124
117	Granitoid evolution in Sinai, Egypt, based on precise SHRIMP U–Pb zircon geochronology. Gondwana Research, 2009, 15, 38-48.	3.0	121
118	Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 2013, 168-169, 15-32.	0.6	121
119	The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society Special Publication, 2009, 323, 73-97.	0.8	120
120	Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U–Pb age and Hf–O isotope evidence. Lithos, 2012, 153, 108-128.	0.6	119
121	The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction. Tectonophysics, 2015, 659, 122-136.	0.9	119
122	Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity. Geological Magazine, 2010, 147, 737-749.	0.9	118
123	New SHRIMP U-Pb zircon ages from the Heilongjiang High-Pressure Belt: Constraints on the Mesozoic evolution of NE China. Numerische Mathematik, 2010, 310, 1024-1053.	0.7	118
124	Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 2006, 28, 3-19.	1.0	117
125	The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 2015, 113, 909-921.	1.0	116
126	A re-evaluation of the origin and setting of the Late Precambrian Hammamat Group based on SHRIMP U–Pb dating of detrital zircons from Gebel Umm Tawat, North Eastern Desert, Egypt. Journal of the Geological Society, 2002, 159, 595-604.	0.9	114

#	Article	IF	CITATIONS
127	Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China: geochemistry, origin and tectonic implications. Journal of the Geological Society, 2011, 168, 525-543.	0.9	114
128	Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 2007, 159, 155-177.	1.2	112
129	Continental flood basalts derived from the hydrous mantle transition zone. Nature Communications, 2015, 6, 7700.	5.8	112
130	Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research, 2013, 233, 337-357.	1.2	110
131	Petrogenesis of an Alkali Syenite-Granite-Rhyolite Suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton: Geochronological, Geochemical and Nd-Sr-Hf Isotopic Evidence for Lithospheric Thinning. Journal of Petrology, 2007, 49, 315-351.	1.1	109
132	Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos, 2010, 120, 421-438.	0.6	108
133	Remnants of Eoarchean continental crust derived from a subducted proto-arc. Science Advances, 2018, 4, eaao3159.	4.7	107
134	Geochemistry and U–Pb zircon dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications. Journal of Asian Earth Sciences, 2015, 97, 197-210.	1.0	103
135	Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 2007, 448, 917-920.	13.7	102
136	SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. Numerische Mathematik, 2008, 308, 185-199.	0.7	101
137	Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 2010, 114, 413-422.	0.6	101
138	The Qiyugou gold-bearing breccia pipes, Xiong'ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids. International Geology Review, 2011, 53, 25-45.	1.1	101
139	Detrital zircons from phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications. Journal of Asian Earth Sciences, 2012, 47, 21-34.	1.0	99
140	Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 2015, 414, 30-44.	1.8	99
141	Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: an Example from the Central Indian Tectonic Zone. Journal of Petrology, 2014, 55, 585-621.	1.1	98
142	Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: An alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos, 2008, 102, 158-178.	0.6	97
143	Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 2011, 39, 1143-1146.	2.0	96
144	Neodymium isotopic compositions of the standard monazites used in U Th Pb geochronology. Chemical Geology, 2012, 334, 221-239.	1.4	96

#	Article	IF	CITATIONS
145	Geological Setting and Controls on the Development of Graphite, Sillimanite and Phosphate Mineralization within the Jiamusi Massif: An Exotic Fragment of Gondwanaland Located in North-Eastern China?. Gondwana Research, 1999, 2, 21-46.	3.0	95
146	The distribution of 3.0 Ga and 2.7 Ga volcanic episodes in the Yilgarn Craton of Western Australia. Precambrian Research, 1990, 48, 309-325.	1.2	94
147	Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U–Pb age and Sr–Nd–Hf–O isotopic evidence. Lithos, 2013, 162-163, 140-156.	0.6	93
148	SHRIMP U–Pb zircon dating of the Wulian complex: Defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China. Precambrian Research, 2008, 162, 559-576.	1.2	92
149	Earlyâ€Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 2017, 122, 2291-2309.	1.4	89
150	The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society Special Publication, 2010, 338, 117-137.	0.8	84
151	Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China. Tectonics, 2014, 33, 960-981.	1.3	84
152	An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nature Communications, 2020, 11, 1241.	5.8	83
153	Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt: Implications for tectonic setting and crustal evolution. Lithos, 2012, 154, 147-165.	0.6	81
154	Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 2012, 134-135, 123-145.	0.6	80
155	SHRIMP zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for â^¼2.56Ga granitic magmatism in Western Dharwar Craton, Southern India: Evidence for short-lived Neoarchean episodic crustal growth?. Precambrian Research, 2014, 243, 197-220.	1.2	80
156	Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research, 2016, 29, 168-180.	3.0	80
157	In situ U–Th–Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Research, 2010, 180, 26-46.	1.2	79
158	Hf isotopic composition of single zircons from Neoproterozoic arc volcanics and post-collision granites, Eastern Desert of Egypt: Implications for crustal growth and recycling in the Arabian-Nubian Shield. Precambrian Research, 2013, 239, 42-55.	1.2	79
159	Zircon Uâ€Pb/Luâ€Hf and monazite chemical dating of the Tirodi biotite gneiss: implication for latest Palaeoproterozoic to Early Mesoproterozoic orogenesis in the Central Indian Tectonic Zone. Geological Journal, 2011, 46, 574-596.	0.6	77
160	Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: Petrogenesis and implications for Phanerozoic continental crustal growth. Lithos, 2010, 117, 283-306.	0.6	76
161	Terrane accretion in the southwestern Yilgarn Craton: evidence from a deep seismic crustal profile. Precambrian Research, 1996, 78, 179-196.	1.2	75
162	U–Pb zircon age constraints on the Dongwanzi ultramafic–mafic body, North China, confirm it is not an Archean ophiolite. Earth and Planetary Science Letters, 2007, 255, 85-93.	1.8	75

#	Article	IF	CITATIONS
163	Late Neoarchean potassic high Ba–Sr granites in the Taishan granite–greenstone terrane: Petrogenesis and implications for continental crustal evolution. Chemical Geology, 2013, 344, 23-41.	1.4	75
164	Archean magmatism and crustal evolution in the northern Tarim Craton: Insights from zircon U–Pb–Hf–O isotopes and geochemistry of â^¼2.7Ga orthogneiss and amphibolite in the Korla Complex. Precambrian Research, 2014, 252, 145-165.	1.2	74
165	Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. Geological Society Special Publication, 2004, 226, 5-25.	0.8	73
166	Detrital zircon U–Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. Journal of the Geological Society, 2008, 165, 423-433.	0.9	73
167	Linking magmatism with collision in an accretionary orogen. Scientific Reports, 2016, 6, 25751.	1.6	73
168	New evidence for ~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research, 2013, 23, 1484-1490.	3.0	72
169	Composition, age, and origin of the ~620ÂMa Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt. International Journal of Earth Sciences, 2012, 101, 1705-1722.	0.9	71
170	Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ 180 igneous province, east-central China. Contributions To Mineralogy and Petrology, 2013, 165, 641-662.	1.2	69
171	Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 2014, 25, 1535-1553.	3.0	69
172	Metallic lead nanospheres discovered in ancient zircons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4958-4963.	3.3	68
173	Paired metamorphism in the Neoarchean: A record of accretionary-to-collisional orogenesis in the North China Craton. Earth and Planetary Science Letters, 2020, 543, 116355.	1.8	68
174	A 100 Ma bimodal composite dyke complex in the Jiamusi Block, NE China: An indication for lithospheric extension driven by Paleo-Pacific roll-back. Lithos, 2013, 162-163, 317-330.	0.6	67
175	Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U–Pb and Lu–Hf isotopes of the Khanka Lake granitoids. Lithos, 2017, 274-275, 254-270.	0.6	67
176	New insights into the metallogeny of MVT Zn-Pb deposits: A case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes. American Mineralogist, 2018, 103, 91-108.	0.9	67
177	The Jack Hills greenstone belt, Western AustraliaPart 2: Lithological relationships and implications for the deposition of ≥4.0Ga detrital zircons. Precambrian Research, 2007, 155, 261-286.	1.2	66
178	The interpretation of complex zircon U–Pb systems in Archaean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, Western Australia. Precambrian Research, 1998, 91, 309-332.	1.2	65
179	Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications. Lithos, 2013, 179, 99-119.	0.6	65
180	Mid-Neoproterozoic (ca. 830-800 Ma) metamorphic <i>P-T</i> paths link Tarim to the circum-Rodinia subduction-accretion system. Tectonics, 2016, 35, 1465-1488.	1.3	65

#	Article	IF	CITATIONS
181	Precambrian crustal evolution of the eastern North China Craton as revealed by U–Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing'eryu Formation. Precambrian Research, 2012, 200-203, 184-208.	1.2	64
182	Ore genesis of the Fule Pb Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C O S and in situ S Pb isotopes. Gondwana Research, 2018, 54, 161-179.	3.0	63
183	Zircons from rodingite in the Western Tianshan serpentinite complex: Mineral chemistry and U–Pb ages define nature and timing of rodingitization. Lithos, 2010, 118, 17-34.	0.6	61
184	Timing of Late Archaean granulite facies metamorphism in the southwestern Yilgarn Craton of Western Australia: evidence from U-Pb ages of zircons fro mafic granulites. Precambrian Research, 1994, 68, 307-321.	1.2	59
185	Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone. International Journal of Earth Sciences, 2009, 98, 1489-1510.	0.9	59
186	A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature, 2008, 454, 92-95.	13.7	58
187	l-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China. Lithos, 2014, 206-207, 34-51.	0.6	58
188	Late Permian appinite–granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications. Lithos, 2012, 155, 201-217.	0.6	57
189	Neoarchean siliceous high-Mg basalt (SHMB) from the Taishan granite–greenstone terrane, Eastern North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 2013, 228, 233-249.	1.2	57
190	Nanoscale occurrence of Pb in an Archean zircon. Geochimica Et Cosmochimica Acta, 2004, 68, 4679-4686.	1.6	55
191	Chapter 3.5 Eoarchean Rocks and Zircons in the North China Craton. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, 15, 251-273.	0.2	55
192	Radiation damage and alteration of zircon from a 3.3ÂGa porphyritic granite from the Jack Hills, Western Australia. Chemical Geology, 2007, 236, 92-111.	1.4	55
193	Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 2015, 34, 1269-1289.	1.3	54
194	The nature and origin of Late Proterozoic high-grade gneisses of the Leeuwin Block, Western Australia. Precambrian Research, 1990, 47, 251-270.	1.2	53
195	Chapter 2.5 The Oldest Terrestrial Mineral Record: A Review of 4400 to 4000 Ma Detrital Zircons from Jack Hills, Western Australia. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, , 91-111.	0.2	53
196	Tectonic significance and geodynamic processes of largeâ€scale Early Cretaceous granitoid magmatic events in the southern Great Xing'an Range, North China. Tectonics, 2017, 36, 615-633.	1.3	52
197	REE Daughter Minerals Trapped in Fluid Inclusions in the Giant Bayan Obo REE-Nb-Fe Deposit, Inner Mongolia, China. International Geology Review, 2004, 46, 638-645.	1.1	51
198	Paleoproterozoic granitoids in the basement of Bangladesh: A piece of the Indian shield or an exotic fragment of the Gondwana jigsaw?. Gondwana Research, 2007, 12, 380-387.	3.0	51

#	Article	IF	CITATIONS
199	Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications. Bulletin of the Geological Society of America, 2015, 127, 781-803.	1.6	51
200	A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China craton: age, origin and tectonic significance. Geological Magazine, 2008, 145, 305-320.	0.9	50
201	Late Neoarchean magmatic and subsequent metamorphic events in the northern North China Craton: SHRIMP zircon dating and Hf isotopes of Archean rocks from Yunmengshan Geopark, Miyun, Beijing. Gondwana Research, 2012, 21, 785-800.	3.0	49
202	Late Triassic melting of a thickened crust in southeastern China: Evidence for flat-slab subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 2013, 74, 265-279.	1.0	49
203	Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implications for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos, 2014, 210-211, 57-68.	0.6	49
204	The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contributions To Mineralogy and Petrology, 2011, 162, 961-974.	1.2	48
205	Methane-rich fluid inclusions in skarn near the giant REE–Nb–Fe deposit at Bayan Obo, Northern China. Ore Geology Reviews, 2004, 25, 301-309.	1.1	46
206	Identification of Mesoproterozoic zircons in a Triassic dolerite from the Liaodong Peninsula, Northeast China. Science Bulletin, 2004, 49, 1958-1962.	1.7	46
207	Zircon U–Pb and Lu–Hf isotope study of the Neoproterozoic Haizhou Group in the Sulu orogen: Provenance and tectonic implications. Lithos, 2012, 136-139, 261-281.	0.6	46
208	A mixed source for the Late Triassic Garzê-Daocheng granitic belt and its implications for the tectonic evolution of the Yidun arc belt, eastern Tibetan Plateau. Lithos, 2017, 288-289, 214-230.	0.6	44
209	Mesoproterozoic high Fe–Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 2013, 235, 190-207.	1.2	42
210	PbSL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton. Journal of Asian Earth Sciences, 2011, 42, 142-154.	1.0	41
211	Continental Arc and Backâ€Arc Migration in Eastern NE China: New Constraints on Cretaceous Paleoâ€Pacific Subduction and Rollback. Tectonics, 2018, 37, 3893-3915.	1.3	41
212	Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos, 2016, 240-243, 371-381.	0.6	40
213	Crust/mantle interaction during the construction of an extensional magmatic dome: Middle to Late Jurassic plutonic complex from western Liaoning, North China Craton. Lithos, 2014, 205, 185-207.	0.6	39
214	The timing of final closure along the Changchun–Yanji suture zone: Constraints from detrital zircon U–Pb dating of the Triassic Dajianggang Formation, NE China. Lithos, 2016, 261, 216-231.	0.6	39
215	A Middle Permian Ophiolitic Mélange Belt in the Solonker Suture Zone, Western Inner Mongolia, China: Implications for the Evolution of the Paleoâ€Asian Ocean. Tectonics, 2018, 37, 1292-1320.	1.3	39
216	Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The â^1⁄43.72 Ga Aktash gneisses, Tarim Craton (NW China). Earth and Planetary Science Letters, 2020, 538, 116225.	1.8	39

#	Article	IF	CITATIONS
217	The Wadi Zaghra metasediments of Sinai, Egypt: new constraints on the late Cryogenian–Ediacaran tectonic evolution of the northernmost Arabian–Nubian Shield. International Geology Review, 2014, 56, 1020-1038.	1.1	38
218	Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Ganluogou dioritic complex in the northern Triassic Yidun arc belt, Eastern Tibetan Plateau: Implications for the closure of the Garzê-Litang Ocean. Lithos, 2016, 248-251, 94-108.	0.6	38
219	Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis. Bulletin of the Geological Society of America, 2019, 131, 1031-1056.	1.6	38
220	Geochemistry of hornblende gabbros from Sonidzuoqi, Inner Mongolia, North China: implications for magmatism during the final stage of suprasubductionâ€zone ophiolite formation. International Geology Review, 2009, 51, 345-373.	1.1	37
221	Zircon U–Pb–Lu–Hf–O isotopic evidence for ≥3.5Ga crustal growth, reworking and differentiation in the northern Tarim Craton. Precambrian Research, 2014, 249, 115-128.	1.2	36
222	Evolution of the Western Margin of Australia during the Rodinian and Gondwanan Supercontinent Cycles. Gondwana Research, 1999, 2, 481-499.	3.0	35
223	Did South America and West Africa Marry and Divorce or Was it a Long-lasting Relationship?. Gondwana Research, 2002, 5, 591-596.	3.0	35
224	U–Pb zircon geochronology of the eastern part of the Southern Ethiopian Shield. Precambrian Research, 2012, 206-207, 159-167.	1.2	35
225	A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30ÂMa: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic. Earth-Science Reviews, 2020, 209, 103317.	4.0	33
226	Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos, 2018, 296-299, 482-495.	0.6	32
227	Geochemistry of Middle Triassic gabbros from northern Liaoning, North China: origin and tectonic implications. Geological Magazine, 2009, 146, 540-551.	0.9	31
228	What Happened in the Transâ€North China Orogen in the Period 2560â€1850 Ma?. Acta Geologica Sinica, 2006, 80, 790-806.	0.8	31
229	Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth. Precambrian Research, 2015, 260, 76-90.	1.2	31
230	Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau. Lithos, 2017, 284-285, 709-729.	0.6	31
231	Uâ€Pb Dating and Luâ€Hf Isotopes of Detrital Zircons From the Southern Sikhoteâ€Alin Orogenic Belt, Russian Far East: Tectonic Implications for the Early Cretaceous Evolution of the Northwest Pacific Margin. Tectonics, 2017, 36, 2555-2598.	1.3	31
232	Geochronology and Tectonic Implications of the "Proterozoic" Seluohe Group at the Northern Margin of the North China Craton. International Geology Review, 2008, 50, 135-153.	1.1	30
233	Archaean evolution of the Wongan Hills Greenstone Belt, Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 1990, 37, 279-292.	0.4	29
234	Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia. Precambrian Research, 2008, 162, 354-384.	1.2	28

#	Article	IF	CITATIONS
235	New constraints on the Hadean to Proterozoic history of the Jack Hills belt, Western Australia. Gondwana Research, 2018, 55, 74-91.	3.0	28
236	Understanding and study perspectives on tectonic evolution and crustal structure of the Paleozoic Chinese Tianshan. Episodes, 2010, 33, 242-266.	0.8	28
237	Sedimentation and magmatism in the Paleoproterozoic Cuddapah Basin, India: Consequences of lithospheric extension. Gondwana Research, 2017, 48, 153-163.	3.0	26
238	A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization. Geology, 2018, 46, 303-306.	2.0	25
239	On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador. Precambrian Research, 2019, 323, 70-81.	1.2	25
240	The origin of mafic microgranular enclaves in granitoids: Insights from in situ Sr isotope of plagioclases and Zr-Hf isotopes of zircons. Chemical Geology, 2020, 551, 119776.	1.4	24
241	Contrasting Middle Jurassic and Early Cretaceous mafic intrusive rocks from western Liaoning, North China craton: petrogenesis and tectonic implications. Geological Magazine, 2010, 147, 844-859.	0.9	23
242	An examination by GC×GC-TOFMS of organic molecules present in highlyÂdegraded oils emerging from Caribbean terrestrial seeps of Cretaceous age. Geoscience Frontiers, 2019, 10, 5-15.	4.3	22
243	Crustal growth of the Eastern Dharwar Craton: a Neoarchean collisional orogeny?. Geological Society Special Publication, 2020, 489, 51-77.	0.8	22
244	Identification of ca. 850†Ma high-temperature strongly peraluminous granitoids in southeastern Guizhou Province, South China: A result of early extension along the southern margin of the Yangtze Block. Precambrian Research, 2018, 308, 18-34.	1.2	21
245	Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China. Lithos, 2018, 302-303, 126-141.	0.6	21
246	Peak to post-peak thermal history of the Saglek Block of Labrador: A multiphase and multi-instrumental approach to geochronology. Chemical Geology, 2018, 484, 210-223.	1.4	21
247	Proterozoic events recorded in quartzite cobbles at Jack Hills, Western Australia: New constraints on sedimentation and source of >4Ga zircons. Earth and Planetary Science Letters, 2010, 292, 158-169.	1.8	20
248	Water-fluxed crustal melting and petrogenesis of large-scale Early Cretaceous intracontinental granitoids in the southern Great Xing'an Range, North China. Bulletin of the Geological Society of America, 2018, 130, 580-597.	1.6	20
249	Petrogenesis of the ca. 820–810â€ ⁻ Ma felsic volcanic rocks in the Bikou Group: Implications for the tectonic setting of the western margin of the Yangtze Block. Precambrian Research, 2019, 331, 105370.	1.2	20
250	A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards. International Journal of Mass Spectrometry, 2011, 299, 47-52.	0.7	19
251	Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications. Journal of Asian Earth Sciences, 2017, 144, 69-81.	1.0	19
252	Proterozoic volcanism in the Jack Hills Belt, Western Australia: Some implications and consequences for the World's oldest zircon population. Precambrian Research, 2010, 183, 9-24.	1.2	18

#	Article	IF	CITATIONS
253	Precise measurement of Cr isotope ratios using a highly sensitive Nb ₂ O ₅ emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials. Journal of Analytical Atomic Spectrometry, 2016, 31, 2375-2383.	1.6	18
254	LAâ€ICPMS zircon U–Pb dating of the Heilongjiang Complex in the Luobei area: New constraints for the late Palaeozoicâ€Mesozoic tectonic evolution of Jiamusi Block, NE China. Geological Journal, 2020, 55, 1644-1669.	0.6	18
255	Eoarchean rock association in the Dniester-Bouh Domain of the Ukrainian Shield: A suite of LILE-depleted enderbites and mafic granulites. Precambrian Research, 2021, 352, 106001.	1.2	18
256	SHRIMP U-Pb Dating of Detrital Zircons from the Hammamat Group at Gebel Umm Tawat, North-Eastern Desert, Egypt. Gondwana Research, 2001, 4, 202-206.	3.0	17
257	Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance. Lithos, 2017, 294-295, 147-163.	0.6	17
258	Complexity of the early Archean Uivak Gneiss: Insights from Tigigakyuk Inlet, Saglek Block, Labrador, Canada and possible correlations with south West Greenland. Precambrian Research, 2018, 315, 103-119.	1.2	17
259	Zircon U–Pb–Hf isotopes and whole rock geochemistry of magmatic rocks from the Posht-e-Badam Block: A key to tectonomagmatic evolution of Central Iran. Gondwana Research, 2020, 87, 162-187.	3.0	17
260	Palaeoenvironmental analysis of Archaean siliciclastic sedimentary rocks in the west–central Jack Hills belt, Western Australia with new constraints on ages and correlations. Journal of the Geological Society, 2010, 167, 827-840.	0.9	16
261	High-Grade Magnetite Mineralization at 1.86 Ga in Neoarchean Banded Iron Formations, Gongchangling, China: In Situ U-Pb Geochronology of Metamorphic-Hydrothermal Zircon and Monazite. Economic Geology, 2019, 114, 1159-1175.	1.8	16
262	Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization. Scientific Reports, 2019, 9, 13702.	1.6	16
263	The transition from a passive to an active continental margin in the Jiamusi Block: Constraints from Late Paleozoic sedimentary rocks. Journal of Geodynamics, 2019, 129, 131-148.	0.7	16
264	Zircon U–Pb dating and wholeâ€rock geochemistry of volcanic rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the Mudanjiang and Paleoâ€Pacific oceans from the Jurassic to Cretaceous. Geological Journal, 2020, 55, 1866-1889.	0.6	15
265	New evidence from seismic imaging for subduction during assembly of the North China craton: COMMENT. Geology, 2010, 38, e206-e206.	2.0	14
266	Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology. Journal of Asian Earth Sciences, 2013, 75, 226-242.	1.0	14
267	Differentiation of the early silicate Earth as recorded by 142 Nd- 143 Nd in 3.8–3.0 Ga rocks from the Anshan Complex, North China Craton. Precambrian Research, 2017, 301, 86-101.	1.2	14
268	Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia. Earth and Planetary Science Letters, 2019, 517, 38-49.	1.8	14
269	Late Archaean to Palaeoproterozoic evolution of the Trans-North China Orogen: insights from synthesis of existing data from the Hengshan-Wutai-Fuping belt. Geological Society Special Publication, 2004, 226, 27-55.	0.8	13
270	Response to Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga". Science, 2006, 312, 1139b-1139b.	6.0	13

#	Article	IF	CITATIONS
271	Chapter 3.6 The Narryer Terrane, Western Australia: A Review. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, , 275-304.	0.2	13
272	Implications of a geoscientific traverse over the Darling Fault Zone, Western Australia. Australian Journal of Earth Sciences, 1995, 42, 83-93.	0.4	12
273	The 825†Ma Yiyang high–MgO basalts of central South China: Insights from Os–Hf–Nd data. Chemical Geology, 2018, 502, 107-121.	1.4	12
274	Hadean to Paleoarchean Rocks and Zircons in China. , 2019, , 293-327.		12
275	Synâ€Subduction Strikeâ€Slip Faults Shape an Accretionary Orogen and its Provenance Signatures: Insights From Sikhoteâ€Alin in NE Asia During the Late Jurassic to Early Cretaceous. Tectonics, 2021, 40, e2020TC006541.	1.3	12
276	Cretaceous provenance change in the Hegang Basin and its connection with the Songliao Basin, NE China: evidence for lithospheric extension driven by palaeo-Pacific roll-back. Geological Society Special Publication, 2015, 413, 91-117.	0.8	11
277	Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge. Tectonophysics, 2017, 717, 139-161.	0.9	11
278	Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science (Wuhan, China), 2020, 31, 1142-1169.	1.1	11
279	The early Statherian (ca. 1800–1750ÂMa) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent reconstruction. Precambrian Research, 2021, 358, 106185.	1.2	11
280	Timing of Granite Emplacement in the Central Asian Orogenic Belt of Northeastern China. Gondwana Research, 2001, 4, 823-824.	3.0	10
281	First evidence of Archean mafic dykes at 2.62â€ ⁻ Ga in the Yilgarn Craton, Western Australia: Links to cratonisation and the Zimbabwe Craton. Precambrian Research, 2018, 317, 1-13.	1.2	9
282	Identification of Mesoproterozoic zircons in a Triassic dolerite from the Liaodong Peninsula, Northeast China. Science Bulletin, 2004, 49, 1958.	1.7	8
283	"Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: Geochronological, geochemical and Nd–Sr isotopic evidence―– Reply. Chemical Geology, 2006, 235, 186-190.	1.4	8
284	Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth: REPLY. Geology, 2012, 40, e282-e283.	2.0	8
285	Gneiss-forming events in the Saglek Block, Labrador; a reappraisal of the Uivak gneiss. International Journal of Earth Sciences, 2019, 108, 753-778.	0.9	8
286	The Oldest Terrestrial Mineral Record. , 2019, , 255-278.		8
287	Diversity of Archean crust in the eastern Tula Mountains, Napier Complex, East Antarctica. Gondwana Research, 2020, 82, 151-170.	3.0	8
288	Eoarchean crust in East Antarctica: Extension from Enderby Land into Kemp Land. Gondwana Research, 2021, 93, 227-241.	3.0	8

#	Article	IF	CITATIONS
289	Subduction to post-collisional volcanism in the Northern Arabian-Nubian Shield: Genesis of Cryogenian/Ediacaran intermediate-felsic magmas and the lifespan of a Neoproterozoic mature island arc. Precambrian Research, 2021, 358, 106148.	1.2	7
290	Revisiting Rhenium-Osmium Isotopic Investigations of Petroleum Systems: From Geochemical Behaviours to Geological Interpretations. Journal of Earth Science (Wuhan, China), 2021, 32, 1226-1249.	1.1	7
291	A comment on "Correlations between the Eastern Block of the North China Craton and the Southern Indian block of the Indian Shield: an Archaean to palaeoproterozoic linkâ€â€"Reply. Precambrian Research, 2003, 127, 381-383.	1.2	6
292	CO2 fluid inclusions in Jack Hills zircons. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	6
293	Two Neoarchean tectonothermal events on the western edge of the North Atlantic Craton, as revealed by SIMS dating of the Saglek Block, Nain Province, Labrador. Journal of the Geological Society, 2020, 177, 31-49.	0.9	6
294	Response to Note on "U–Pb zircon age constraints on the Dongwanzi ultramafic–mafic body, North China, confirm it is not an Archean ophiolite―by Kusky and Li. Earth and Planetary Science Letters, 2008, 273, 231-234.	1.8	5
295	How Central Asian Orogeny Evolves: New Insights from Endâ€Permian to Middle Triassic Magmatic Record along the Solonker Suture Zone. Acta Geologica Sinica, 2016, 90, 1907-1908.	0.8	5
296	Multiple sources for Archean granitoids in the Yalgoo area, Yilgarn Craton, Western Australia: Geochemical and isotopic evidence. Precambrian Research, 2018, 314, 76-110.	1.2	5
297	Using In Situ Monazite and Xenotime U-Pb Geochronology to Resolve the Fate of the "Missing―Banded Iron Formation-Hosted High-Grade Hematite Ores of the North China Craton. Economic Geology, 2020, 115, 189-204.	1.8	5
298	Polymetamorphism of mafic granulites in the North China Craton: textural and thermobarometric evidence and tectonic implications. Geological Society Special Publication, 2001, 184, 323-341.	0.8	4
299	Variety, age and origin of zircons in the mid-Cenozoic Westonia Formation, southwestern Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2004, 51, 157-171.	0.4	4
300	Role of fluids in Fe–Ti–P mineralization of the Proterozoic Damiao anorthosite complex, China: Insights from baddeleyite–zircon relationships in ore and altered anorthosite. Ore Geology Reviews, 2019, 115, 103186.	1.1	4
301	Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts. Lithos, 2021, 406-407, 106528.	0.6	4
302	Ta-Nb mineralization in the shallow-level highly-evolved P-poor Shihuiyao granite, Northeast China. Lithos, 2022, 416-417, 106655.	0.6	4
303	The first identification of early Paleoproterozoic (2.46–2.38ÂGa) supracrustal rocks in the Daqingshan area, northwestern North China Craton: Geology, geochemistry and SHRIMP U-Pb dating. Precambrian Research, 2022, 377, 106727.	1.2	4
304	Direct Rubidium-Strontium Dating of Hydrocarbon Charge Using Small Authigenic Illitic Clay Aliquots from the Silurian Bituminous Sandstone in the Tarim Basin, NW China. Scientific Reports, 2019, 9, 12565.	1.6	3
305	The Narryer Terrane, Yilgarn Craton, Western Australia. , 2019, , 401-433.		3
306	Reconstruction of a preRodinia supercontinent: New ad-vances and perspectives. Science Bulletin, 2002, 47, 1585.	1.7	3

#	Article	lF	CITATIONS
307	The distribution of 3.0 and 2.7 Ga volcanic episodes in the Archaean Yilgarn Block, Western Australia. Chemical Geology, 1988, 70, 147.	1.4	2
308	Cogenetic Dykes the Key to Identifying Diverse Magma Batches in the Assembly of Granitic Plutons. Journal of Petrology, 2021, 61, .	1.1	2
309	Volcanism During the Post-accretionary Stage of the Arabian–Nubian Shield. Regional Geology Reviews, 2021, , 485-533.	1.2	2
310	The Precambrian Geology of the North China Craton: A Review and Update of the Key Issues. Modern Approaches in Solid Earth Sciences, 2014, , 149-177.	0.1	2
311	U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform. Geosciences (Switzerland), 2021, 11, 487.	1.0	2
312	Neoarchean magmatism in the southern Scott and Raggatt Mountains, Napier Complex, east Antarctica. Precambrian Research, 2022, 370, 106530.	1.2	2
313	Episodic Proterozoic magmatism in Northwest Bangladesh: Implications for Columbia/Nuna and Rodinia reconstructions. Lithos, 2022, 412-413, 106586.	0.6	2
314	Geochemistry and zircon U–Pb–Hf isotopes of the Mante Aobao granite porphyry at East Ujimqin Banner, Inner Mongolia: implications for petrogenesis and tectonic setting. Geological Magazine, 2020, 157, 1068-1086.	0.9	1
315	First Direct Dating of Alteration of Paleo-Oil Pools Using Rubidium-Strontium Pyrite Geochronology. Minerals (Basel, Switzerland), 2020, 10, 606.	0.8	1
316	Geology of the 2022 Winter Olympic sites, Beijing-Zhangjiakou, China: An analogue of the North China Craton. International Geology Review, 0, , 1-32.	1.1	1
317	Jack Hills Zircon. , 2014, , 1-2.		0
318	Jack Hills (Yilgarn Craton, Western Australia). , 2014, , 1-6.		0
319	Geological Applications of Atom Probe Tomography: New Information from Old Rocks. Microscopy and Microanalysis, 2014, 20, 1678-1679.	0.2	0
320	Jack Hills Zircon. Encyclopedia of Earth Sciences Series, 2015, , 359-359.	0.1	0
321	Newlyâ€discovered Eoarchean TTG gneisses in the Tarim Craton imply plate tectonics at â^1⁄43.7 Ga. Acta Geologica Sinica, 2019, 93, 129-130.	0.8	0
322	Evaluating the Precise ³⁹ Ar/ ⁴⁰ Ar Dating of Multiple Mineral Potassic Phases in Ultraâ€alkaline Rocks: Applications to Mantle Systematics. Acta Geologica Sinica, 2020, 94, 50-50.	0.8	0
323	Remnants of Earth's Oldest Continental Crust Formed by Subduction. Acta Geologica Sinica, 2020, 94, 14-14.	0.8	0
324	Late Paleozoic subduction-related magmatism in NE China and its implication: Insights from intrusions in the Handagai Fe Cu deposit. Lithos, 2021, 404-405, 106482.	0.6	0

#	Article	IF	CITATIONS
325	Hadean. , 2014, , 1-2.		0
326	Hadean. , 2015, , 1063-1064.		0
327	Jack Hills (Yilgarn Craton, Western Australia). , 2015, , 1301-1305.		0
328	TRIASSIC TERMINAL MAGMATISM IN THE SOUTHERN CENTRAL ASIAN OROGENIC BELT: IMPLICATIONS FOR OCEAN CLOSURE IN ACCRETIONARY OROGENS. Geodinamika I Tektonofizika, 2017, 8, 507-508.	0.3	0
329	Hadean. , 2022, , 1-2.		0