
Jiwen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572231/publications.pdf Version: 2024-02-01

INVEN XII

#	Article	IF	CITATIONS
1	Highly enhanced discharged energy density and superior cyclic stability of Bi0.5Na0.5TiO3-based ceramics by introducing Sr0.7Ca0.3TiO3 component. Materials Chemistry and Physics, 2022, 276, 125402.	4.0	10
2	Effect of Ho Addition on the Optical and Electrical Properties of 0.98KNN-0.02SYT Ceramics. Journal of Electronic Materials, 2022, 51, 831-837.	2.2	8
3	Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites. Journal of Materials Science: Materials in Electronics, 2022, 33, 3081-3090.	2.2	4
4	Effects of Er3+ doping on the structure and electro-optical properties of 0.94(K0.5Na0.5)NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramics. Bulletin of Materials Science, 2022, 45, 1.	1.7	3
5	Enhanced Visible Photocatalytic Hydrogen Evolution of KN-Based Semiconducting Ferroelectrics <i>via</i> Band-Gap Engineering and High-Field Poling. ACS Applied Materials & Interfaces, 2022, 14, 8916-8930.	8.0	18
6	Visible-light photocatalytic hydrogen production in a narrow-bandgap semiconducting La/Ni-modified KNbO ₃ ferroelectric and further enhancement <i>via</i> high-field poling. Journal of Materials Chemistry A, 2022, 10, 7238-7250.	10.3	18
7	Giant electric field-induced strain with low hysteresis in Bi0.5Na0.5TiO3-xSr0.7Ca0.3TiO3 lead-free piezoceramics. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
8	Achieving ultrahigh discharge energy and power density in niobate-based glass ceramics <i>via</i> A-site substitution modulation during crystallization. Journal of Materials Chemistry A, 2022, 10, 11535-11541.	10.3	13
9	Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectric-relaxor transition in BiFeO3–BaTiO3 ceramics by in-situ process. Journal of Materials Science: Materials in Electronics, 2021, 32, 1197-1203.	2.2	8
10	Regulating the Structural, Transmittance, Ferroelectric, and Energy Storage Properties of K0.5Na0.5NbO3 Ceramics Using Sr(Yb0.5Nb0.5)O3. Journal of Electronic Materials, 2021, 50, 968-977.	2.2	14
11	Crystal structures and electrical properties of Sr/Feâ€modified KNbO ₃ ferroelectric semiconductors with narrow bandgap. Journal of the American Ceramic Society, 2021, 104, 2181-2190.	3.8	10
12	Significantly enhanced energy harvesting based on Ba(Ti,Sn)O3 and P(VDF-CTFE) composite by piezoelectric and triboelectric hybrid. Journal of Materials Science: Materials in Electronics, 2021, 32, 2422-2431.	2.2	2
13	Giant Enhancement of External Quantum Efficiency in Nearâ€UV Organic Lightâ€Emitting Diodes via Device Aging and Impedance Spectroscopy Analysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100041.	2.4	3
14	High piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3–0.18(Bi0.5K0.5)TiO3 lead-free ceramics modified by (Mn1/3Nb2/3)4+ complex ions. Bulletin of Materials Science, 2021, 44, 1.	1.7	2
15	Enhancement of the up-conversion luminescence performance of Ho3+-doped 0.825K0.5Na0.5NbO3-0.175Sr(Yb0.5Nb0.5)O3 transparent ceramics by polarization. Bulletin of Materials Science, 2021, 44, 1.	1.7	11
16	The (1 â^' x)BiFeO3–xBaTiO3–Bi(Zn0.5Ti0.5)O3 high-temperature lead-free piezoelectric ceramics with strong piezoelectric properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 19713-19723.	2.2	4
17	Nonergodic–ergodic relaxor transition and enhanced piezoelectric properties in B-site complex ions substitution 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 24308-24319.	2.2	4
18	High-field polarization boosting visible-light photocatalytic H2 evolution of narrow-bandgap semiconducting (1 â՞ x)KNbO3–xBa(Ni1/2Nb1/2)O3â~Î^ ferroelectric ceramics. New Journal of Chemistry, 2021, 45, 20296-20308.	2.8	1

#	Article	IF	CITATIONS
19	Fabrication, tunable fluorescence emission and energy transfer of Tm ³⁺ â€Dy ³⁺ coâ€activated P ₂ O ₅ –B ₂ O ₃ –SrO–K ₂ O glasses. Journal of the American Ceramic Society, 2020, 103, 1057-1066.	3.8	27
20	Strong piezoelectricity of Li2CO3-doped BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free piezoelectric ceramics with high Curie temperature and high temperature stability. Journal of Alloys and Compounds, 2020, 819, 153058.	5.5	28
21	Tailoring the Structure, Energy Storage, Strain, and Dielectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics by (Fe1/4Sc1/4Nb1/2)4+ Multiple Complex Ions. Frontiers in Materials, 2020, 7, .	2.4	3
22	Optical and electrical properties of ferroelectric Ba Bi0.5-0.5Ag0.05-0.5Na0.45Ti1-Ni0.5Nb0.5O3 semiconductor ceramics. Materials Letters, 2020, 268, 127627.	2.6	5
23	Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. Journal of Materials Chemistry C, 2020, 8, 5681-5691.	5.5	75
24	Large electrostrain in lowâ€ŧemperature sintered NBTâ€BTâ€0.025FN incipient piezoceramics. Journal of the American Ceramic Society, 2020, 103, 3739-3747.	3.8	36
25	High energy storage efficiency and high electrostrictive coefficients in BNT–BS–xBT ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 5546-5553.	2.2	22
26	Antiferroelectric behavior and giant strain in BNKT ceramics complex Cs2Nb4O11 tungsten bronze phase. Ceramics International, 2020, 46, 10067-10074.	4.8	7
27	Complex impedance spectroscopy of perovskite microwave dielectric ceramics with high dielectric constant. Journal of the American Ceramic Society, 2019, 102, 1852-1865.	3.8	23
28	Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1â^'yMgyO3 Films. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 888-892.	1.0	1
29	Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 568-571.	1.0	0
30	The effect of artificial stress on structure, electrical and mechanical properties of Sr2+ doped BNT–BT lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 21398-21405.	2.2	6
31	Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	31
32	Facile synthesis of solution-processed MoS ₂ nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 926-936.	5.5	38
33	Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 308-311.	1.0	17
34	Influence of Ni doping on the structural, ferroelectric, magnetic and optical properties of \$\$hbox {Bi}_{0.85}hbox {Nd}_{0.15}hbox {Fe}_{1-x}hbox {Ni}_{x}hbox {O}_{3}\$\$ thin films. Bulletin of Materials Science, 2019, 42, 1.	1.7	3
35	The Modification of (Nd0.5Ta0.5)4+ Complex-Ions on Structure and Electrical Properties of Bi0.5Na0.5TiO3-BaTiO3 Ceramics. Materials Research, 2019, 22, .	1.3	4
36	Wide-range thermometry and up-conversion luminescence of Ca5(PO4)3F:Yb3+/Er3+ transparent glass ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 5718-5725.	2.2	21

#	Article	IF	CITATIONS
37	Dielectric behaviors and relaxor characteristics in Bi0.5Na0.5TiO3-BaTiO3 ceramics. Journal of Advanced Dielectrics, 2019, 09, 1950038.	2.4	4
38	Microwave Dielectric Properties of Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) Ceramics with a Low Sintering Temperature. Journal of Electronic Materials, 2019, 48, 656-661.	2.2	5
39	Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior. Journal of Materials Science: Materials in Electronics, 2019, 30, 778-785.	2.2	10
40	The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics. Journal of Physics and Chemistry of Solids, 2019, 126, 287-293.	4.0	21
41	Tunable hole injection of solution-processed polymeric carbon nitride towards efficient organic light-emitting diode. Applied Physics Letters, 2018, 112, .	3.3	18
42	Fabrication and electro-optical properties of CuAl0.802/Zn0.95Al0.050 heterojunction films. Journal of Materials Science: Materials in Electronics, 2018, 29, 7586-7591.	2.2	1
43	Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics. Journal of Alloys and Compounds, 2018, 743, 73-82.	5.5	26
44	Solutionâ€Processed Composite Interfacial Layer of MoO <i>_x</i> â€Doped Graphene Oxide for Robust Hole Injection in Organic Lightâ€Emitting Diode. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700434.	2.4	14
45	Comparative studies on structure, dielectric, strain and energy storage properties of (Bi0.5Na0.5)0.94Ba0.06Ti0.965(Mg1/3Nb2/3)0.035O3 lead-free ceramics prepared by traditional and two-step sintering method. Journal of Materials Science: Materials in Electronics, 2018, 29, 5349-5355.	2.2	7
46	Remarkable improvement of ferroelectric properties and leakage current in BiFeO3 thin films by nd modification. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 64-67.	1.0	6
47	Aqueous Solutionâ€Processed Vanadium Oxide for Efficient Hole Injection Interfacial Layer in Organic Lightâ€Emitting Diode. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800047.	1.8	6
48	Ferroelectricâ€quasiferroelectricâ€ergodic relaxor transition and multifunctional electrical properties in Bi _{0.5} Na _{0.5} TiO ₃ â€based ceramics. Journal of the American Ceramic Society, 2018, 101, 1554-1565.	3.8	51
49	Microwave dielectric properties of Sr0.7Ce0.2TiO3–Sr(Mg1/3Nb2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 2668-2675.	2.2	3
50	Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1433-1436.	1.0	1
51	Resistance-switching properties of Bi-doped \$\$hbox {SrTiO}_{3}\$\$ SrTiO 3 films for non-volatile memory applications with different device structures. Bulletin of Materials Science, 2018, 41, 1.	1.7	3
52	Excellent optical, dielectric, and ferroelectric properties of Sr(In0.5Nb0.5)O3 modified K0.5Na0.5NbO3 lead-free transparent ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 19123-19129.	2.2	15
53	Rectifying resistance-switching behaviour of Ag/SBTO/STMO/ \$\$hbox {p}^{+}\$\$ p + -Si heterostructure films. Bulletin of Materials Science, 2018, 41, 1.	1.7	0
54	Highâ€energy storage and temperature stable dielectrics properties of leadâ€free BiScO ₃ –BaTiO ₃ – <i>x</i> (Bi _{0.5} Na _{0.5})TiO ₃ ceramics. IET Nanodielectrics, 2018, 1, 143-148.	4.1	2

#	Article	IF	CITATIONS
55	Luminescent properties and energy transfer of Tm3+/Dy3+ co-doped oxyfluoride borate glasses for white LEDs. Journal of Materials Science: Materials in Electronics, 2018, 29, 16041-16049.	2.2	18
56	Microstructures and microwave dielectric properties of (Ba1â^'xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. Journal of Advanced Ceramics, 2017, 6, 50-58.	17.4	16
57	Resistive switching behavior of Ag/Mg0.2Zn0.8O/ZnMn2O4/p+-Si heterostructure devices for nonvolatile memory applications. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 29-32.	1.0	6
58	Effect of domains configuration on crystal structure in ferroelectric ceramics as revealed by XRD and dielectric spectrum. Bulletin of Materials Science, 2017, 40, 1159-1163.	1.7	0
59	Fabrication and properties of Ag/Mg0.2Zn0.80/La0.67Ca0.33MnO/p+-Si resistive switching heterostructure devices. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 547-551.	1.0	0
60	A new insight into structural complexity in ferroelectric ceramics. Journal of Advanced Ceramics, 2017, 6, 262-268.	17.4	6
61	Bipolar resistive switching behaviour in \$\$mathrm{Mn}_{0.03}mathrm{Zn}_{0.97}{hbox {O/amorphous}}\$\$ Mn 0.03 Zn 0.97 O/amorphous \$\$mathrm{La}_{0.7}mathrm{Zn}_{0.3}mathrm{MnO}_{3}\$\$ La 0.7 Zn 0.3 MnO 3 heterostructure films. Bulletin of Materials Science. 2017. 40. 1285-1289.	1.7	1
62	Effects of electrode on resistance switching properties of ZnMn2O4 films deposited by magnetron sputtering. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1230-1234.	1.0	2
63	High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics. Journal of Electroceramics, 2016, 37, 23-28.	2.0	2
64	Improved ferroelectric and leakage properties of Bi3.15Nd0.85Ti3O12/BiFeO3 heterojunction thin films formed through sol–gel method. Journal of Materials Science: Materials in Electronics, 2016, 27, 7501-7504.	2.2	1
65	Effect of poling on polarization alignment, dielectric behavior, and piezoelectricity development in polycrystalline BiFeO ₃ –BaTiO ₃ ceramics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 52-59.	1.8	15
66	Low temperature synthesis of amorphous La0.7Zn0.3MnO3 films grown on p+-Si substrates and its resistive switching properties. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 727-730.	1.0	2
67	Effects of Zn doping concentration on resistive switching characteristics in Ag /La1â^'x Zn x MnO 3 / p + \$_{3}/extit {p}^{mathrm {+}}\$ -Si devices. Bulletin of Materials Science, 2016, 39, 1665-1670.	1.7	2
68	Structure and properties of (1â^'x)[(K0.5Na0.5)NbO3–LiSbO3]– xBiFe0.8Co0.2O3 lead-free piezoelectric ceramics. Bulletin of Materials Science, 2016, 39, 743-747.	1.7	10
69	Effects of sintering temperature on structure and properties of 0.98[K0.5Na0.5NbO3–LiSbO3–BiFeO3]–0.02ZnO piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 2036-2041.	2.2	4
70	Influence of sintering temperature on structure and properties of V2O5-doping KNN–LS–BF piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 8217-8220.	2.2	9
71	Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio. Journal of Materials Science: Materials in Electronics, 2016, 27, 10810-10815.	2.2	34
72	Influence on structure and properties of CuO addition to KNN–LS–BF piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 5016-5019.	2.2	5

#	Article	IF	CITATIONS
73	High Piezoelectric Response in (Li0.5Sm0.5)2+-Modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Near the Nonergodic–Ergodic RelaxorÅTransition. Journal of Electronic Materials, 2016, 45, 2967-2973.	2.2	6
74	High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion. Journal of Alloys and Compounds, 2016, 666, 209-216.	5.5	75
75	High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1â^'x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceramics International, 2016, 42, 2221-2226.	4.8	79
76	Resistance switching properties of Ag/ZnMn2O4/p-Si fabricated by magnetron sputtering for resistance random access memory. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1159-1162.	1.0	6
77	Effects of tin content on structure, properties, electrical repeatability, uniformity and stability of high sheet resistance ITO thin films for touch panels. Journal of Materials Science: Materials in Electronics, 2015, 26, 6954-6960.	2.2	5
78	Effects of sintering temperature on structure and properties of 0.998[0.95(K0.5Na0.5)NbO3–0.05LiSbO3]–0.002BiFe0.8Co0.2O3 piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 6129-6133.	2.2	6
79	Temperature stability of sodium-doped BiFeO3–BaTiO3 piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 9336-9341.	2.2	15
80	Microstructure and Electrical Properties of K0.5Na0.5NbO3-LiSbO3-BiFeO3-xÂ%molZnO Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials, 2014, 43, 506-511.	2.2	6
81	Effects of CuO doping on the structure and properties lead-free KNN-LS piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2469-2472.	2.2	16
82	Effects of Co doping on microstructure and properties of (K0.5Na0.5)NbO3–LiSbO3–BiFe(1â^'x)Co x O3 lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1480-1484.	2.2	8
83	Effects of sintering temperature on dielectric and piezoelectric properties of KNN-LS-BF-0.4mol%CuO lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1519-1522.	2.2	2
84	Effects of Sintering Temperature on Structure and Properties of 0.997(KNN-LS-BF)-0.003V2O5 Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials, 2013, 42, 458-462.	2.2	3
85	Microstructure and properties of Al-doped ZnO thin films by nonreactive DC magnetron sputtering at room temperature following rapid thermal annealing. Journal of Materials Science: Materials in Electronics, 2010, 21, 33-37.	2.2	12
86	Effects of annealing temperature and thickness on microstructure and properties of sol–gel derived multilayer Al-doped ZnO films. Journal of Materials Science: Materials in Electronics, 2010, 21, 145-148.	2.2	19
87	Room temperature deposition and properties of ZnO:Al thin films by nonreactive DC magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2008, 19, 1135-1139.	2.2	19