
Mohamad K Nazeeruddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316-319.	13.7	8,542
2	Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993, 115, 6382-6390.	6.6	5,813
3	Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.	6.0	5,637
4	Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science, 2016, 9, 1989-1997.	15.6	4,560
5	Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.	6.6	3,982
6	Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005, 127, 16835-16847.	6.6	2,645
7	Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001, 123, 1613-1624.	6.6	2,483
8	Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7, 486-491.	15.6	2,423
9	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	6.0	2,260
10	Mesoscopic CH ₃ NH ₃ Pbl ₃ /TiO ₂ Heterojunction Solar Cells. Journal of the American Chemical Society, 2012, 134, 17396-17399.	6.6	1,801
11	Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516, 4613-4619.	0.8	1,702
12	Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2016, 2, e1501170.	4.7	1,669
13	One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8, 15684.	5.8	1,625
14	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2, 402-407.	13.3	1,466
15	Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014, 8, 128-132.	15.6	1,320
16	Enhance the Optical Absorptivity of Nanocrystalline TiO ₂ Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 10720-10728.	6.6	1,307
17	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	15.6	1,220
18	Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH ₃ NH ₃ PbI ₃ perovskite solar cells: the role of a compensated electric field. Energy and Environmental Science, 2015, 8, 995-1004.	15.6	1,150

#	Article	IF	CITATIONS
19	Mixedâ€Organicâ€Cation Perovskite Photovoltaics for Enhanced Solarâ€Light Harvesting. Angewandte Chemie - International Edition, 2014, 53, 3151-3157.	7.2	1,117
20	Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8, 2928-2934.	15.6	1,097
21	Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 2014, 14, 3608-3616.	4.5	1,033
22	Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chemistry, 2015, 7, 703-711.	6.6	1,033
23	Acidâ~'Base Equilibria of (2,2â€~-Bipyridyl-4,4â€~-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999, 38, 6298-6305.	1.9	1,020
24	High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials, 2006, 18, 1202-1205.	11.1	997
25	Not All That Clitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS Nano, 2016, 10, 6306-6314.	7.3	966
26	Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15, 603-612.	4.4	938
27	Perovskite as Light Harvester: A Game Changer in Photovoltaics. Angewandte Chemie - International Edition, 2014, 53, 2812-2824.	7.2	862
28	First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2013, 117, 13902-13913.	1.5	861
29	Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‣tate Solar Cells. Advanced Functional Materials, 2014, 24, 3250-3258.	7.8	850
30	Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 12330-12396.	23.0	839
31	Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of the Electrochemical Society, 2006, 153, A2255.	1.3	824
32	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, 1, .	19.8	816
33	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
34	Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano, 2010, 4, 3374-3380.	7.3	781
35	Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications, 2014, 5, 3834.	5.8	769
36	Molecular Engineering of Organic Sensitizers for Solar Cell Applications. Journal of the American Chemical Society, 2006, 128, 16701-16707.	6.6	760

#	Article	IF	CITATIONS
37	Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 2016, 7, 10379.	5.8	744
38	Dye-sensitized solar cells: A brief overview. Solar Energy, 2011, 85, 1172-1178.	2.9	726
39	Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2Solar Cell. Journal of Physical Chemistry B, 2003, 107, 8981-8987.	1.2	712
40	Tris(2-(1 <i>H</i> -pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 18042-18045.	6.6	698
41	Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 11760-11762.	1.5	691
42	Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019, 4, 4-22.	23.3	671
43	Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells. ACS Nano, 2014, 8, 362-373.	7.3	663
44	Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of the American Chemical Society, 2008, 130, 6259-6266.	6.6	625
45	Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Letters, 2009, 9, 4221-4227.	4.5	612
46	lonic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nature Communications, 2016, 7, 10334.	5.8	602
47	Control of dark current in photoelectrochemical (TiO2/l––l3–) and dye-sensitized solar cells. Chemical Communications, 2005, , 4351.	2.2	561
48	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	15.6	536
49	High efficiency stable inverted perovskite solar cells without current hysteresis. Energy and Environmental Science, 2015, 8, 2725-2733.	15.6	533
50	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	15.6	525
51	Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. Journal of Physical Chemistry B, 2006, 110, 7635-7639.	1.2	522
52	Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Letters, 2005, 5, 1789-1792.	4.5	520
53	High-Performance Nanostructured Inorganicâ^'Organic Heterojunction Solar Cells. Nano Letters, 2010, 10, 2609-2612.	4.5	520
54	Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. Journal of the American Chemical Society, 2013, 135, 19087-19090.	6.6	512

#	Article	IF	CITATIONS
55	Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials, 2014, 26, 6160-6164.	3.2	502
56	Efficient Far Red Sensitization of Nanocrystalline TiO ₂ Films by an Unsymmetrical Squaraine Dye. Journal of the American Chemical Society, 2007, 129, 10320-10321.	6.6	497
57	Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices. Journal of the American Chemical Society, 2003, 125, 8790-8797.	6.6	490
58	Molecular Cosensitization for Efficient Panchromatic Dyeâ€ 5 ensitized Solar Cells. Angewandte Chemie - International Edition, 2007, 46, 8358-8362.	7.2	490
59	PbS and CdS Quantum Dotâ€Sensitized Solidâ€State Solar Cells: "Old Concepts, New Results― Advanced Functional Materials, 2009, 19, 2735-2742.	7.8	458
60	Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.	19.8	445
61	Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy and Environmental Science, 2017, 10, 621-627.	15.6	436
62	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics, 2009, 3, 406-411.	15.6	430
63	Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 15397-15409.	1.2	425
64	Predicting the Openâ€Circuit Voltage of CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Nonâ€Radiative Recombination. Advanced Energy Materials, 2015, 5, 1400812.	10.2	425
65	Influence of the Donor Size in Dâ^ï€â€"A Organic Dyes for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 5722-5730.	6.6	417
66	Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7, 994.	15.6	409
67	Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013, 3, 18762.	1.7	405
68	Coll(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. Journal of Physical Chemistry B, 2001, 105, 10461-10464.	1.2	402
69	High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2photoanode. Chemical Communications, 2006, , 4004-4006.	2.2	399
70	Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters, 2014, 14, 2591-2596.	4.5	397
71	New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society, 2009, 131, 5930-5934.	6.6	385
72	High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy and Environmental Science, 2015, 8, 3550-3556.	15.6	384

#	Article	IF	CITATIONS
73	The synergistic effect of H ₂ O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy and Environmental Science, 2017, 10, 808-817.	15.6	383
74	Highly Efficient and Thermally Stable Organic Sensitizers for Solventâ€Free Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 327-330.	7.2	370
75	Metal free sensitizer and catalyst for dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 3439.	15.6	365
76	CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. Journal of Physical Chemistry C, 2008, 112, 11600-11608.	1.5	339
77	Outdoor Performance and Stability under Elevated Temperatures and Longâ€Term Light Soaking of Tripleâ€Layer Mesoporous Perovskite Photovoltaics. Energy Technology, 2015, 3, 551-555.	1.8	336
78	Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmetrical Zinc Phthalocyanine. Angewandte Chemie - International Edition, 2007, 46, 373-376.	7.2	334
79	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	5.6	329
80	Analysis of Electron Transfer Properties of ZnO and TiO ₂ Photoanodes for Dye-Sensitized Solar Cells. ACS Nano, 2014, 8, 2261-2268.	7.3	326
81	Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO2Films:Â Free Energy vs Distance Dependence. Journal of the American Chemical Society, 2004, 126, 5225-5233.	6.6	325
82	Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells. Advanced Materials, 2004, 16, 1806-1811.	11.1	324
83	An Organic D-Ï€-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells. Nano Letters, 2011, 11, 1452-1456.	4.5	322
84	Nanowire Perovskite Solar Cell. Nano Letters, 2015, 15, 2120-2126.	4.5	321
85	Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 16172-16178.	6.6	321
86	Panchromatic engineering for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 842-857.	15.6	319
87	Reversible Colorimetric Probes for Mercury Sensing. Journal of the American Chemical Society, 2005, 127, 12351-12356.	6.6	318
88	Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA) _{<i>x</i>} (FA) _{1–<i>x</i>} PbI ₃ Hybrid Perovskites from Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 14173-14180.	6.6	317
89	Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy, 2012, 86, 1563-1575.	2.9	315
90	Surface Modification of Titanium with Phosphonic Acid To Improve Bone Bonding:Â Characterization by XPS and ToF-SIMS. Langmuir, 2002, 18, 2582-2589.	1.6	311

#	Article	IF	CITATIONS
91	Selective growth of layered perovskites for stable and efficient photovoltaics. Energy and Environmental Science, 2018, 11, 952-959.	15.6	305
92	Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013, 1, 11842.	5.2	301
93	Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications, 2014, 5, 5001.	5.8	294
94	Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Progress in Photovoltaics: Research and Applications, 2006, 14, 589-601.	4.4	291
95	Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir, 2004, 20, 6514-6517.	1.6	288
96	Recent Developments in Solid‣tate Dye‣ensitized Solar Cells. ChemSusChem, 2008, 1, 699-707.	3.6	286
97	Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator. Langmuir, 2009, 25, 7602-7608.	1.6	270
98	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
99	Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem, 2016, 9, 10-27.	3.6	267
100	Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordination Chemistry Reviews, 2005, 249, 1460-1467.	9.5	262
101	Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chemical Science, 2011, 2, 949.	3.7	259
102	Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells. ACS Nano, 2011, 5, 9171-9178.	7.3	258
103	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphileâ€Modified CH ₃ NH ₃ PbI ₃ . Advanced Materials, 2016, 28, 2910-2915.	11.1	258
104	Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells:  Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate. Journal of Physical Chemistry C, 2007, 111, 6561-6567.	1.5	257
105	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
106	Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 16376-16383.	6.6	254
107	Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 2018, 9, 5028.	5.8	245
108	Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells. Nano Letters, 2011, 11, 4789-4793.	4.5	243

#	Article	IF	CITATIONS
109	Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material. Journal of the American Chemical Society, 2014, 136, 8516-8519.	6.6	243
110	Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1317-1328.	9.5	241
111	Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2films. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	239
112	A Methoxydiphenylamine‣ubstituted Carbazole Twin Derivative: An Efficient Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11409-11413.	7.2	239
113	Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2Films. Langmuir, 2002, 18, 952-954.	1.6	238
114	Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer. Chemistry of Materials, 1997, 9, 430-439.	3.2	234
115	From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chemistry of Materials, 2017, 29, 3490-3498.	3.2	234
116	Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells:  Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines. Inorganic Chemistry, 1997, 36, 5937-5946.	1.9	228
117	Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO ₂ Nanoparticles:  The Role of Sensitizer Protonation. Journal of the American Chemical Society, 2007, 129, 14156-14157.	6.6	228
118	High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters, 2009, 9, 2487-2492.	4.5	228
119	Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chemical Reviews, 2016, 116, 9485-9564.	23.0	225
120	First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru(II) Dyes on Extended TiO ₂ Substrates for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 6054-6061.	1.5	224
121	A Lightâ€Resistant Organic Sensitizer for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2009, 48, 1576-1580.	7.2	223
122	Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes. Inorganic Chemistry, 2008, 47, 980-989.	1.9	222
123	Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO ₂ in Dye-Sensitized Solar Cell Models. Journal of Physical Chemistry C, 2011, 115, 8825-8831.	1.5	222
124	Supramolecular Control of Charge-Transfer Dynamics on Dye-sensitized Nanocrystalline TiO2 Films. Chemistry - A European Journal, 2004, 10, 595-602.	1.7	219
125	Cation Dynamics in Mixed-Cation (MA) _{<i>x</i>} (FA) _{1–<i>x</i>} Pbl ₃ Hybrid Perovskites from Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 10055-10061.	6.6	209
126	Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A, 2017, 5, 7811-7815.	5.2	209

#	Article	IF	CITATIONS
127	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry, 2010, 20, 1654.	6.7	208
128	Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. Journal of Organometallic Chemistry, 2009, 694, 2661-2670.	0.8	206
129	A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy and Environmental Science, 2015, 8, 1986-1991.	15.6	206
130	Deep level trapped defect analysis in CH ₃ NH ₃ PbI ₃ perovskite solar cells by deep level transient spectroscopy. Energy and Environmental Science, 2017, 10, 1128-1133.	15.6	206
131	Light Harvesting and Charge Recombination in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano, 2015, 9, 4200-4209.	7.3	205
132	Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2012, 134, 19438-19453.	6.6	204
133	A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy and Environmental Science, 2015, 8, 1816-1823.	15.6	202
134	Effect of Coadsorbent on the Photovoltaic Performance of Zinc Pthalocyanine-Sensitized Solar Cells. Langmuir, 2008, 24, 5636-5640.	1.6	199
135	Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chemical Communications, 2007, , 4680.	2.2	198
136	Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO ₂ Nanocrystalline Films. Advanced Functional Materials, 2009, 19, 2720-2727.	7.8	197
137	Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir, 2007, 23, 10906-10909.	1.6	196
138	Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy and Environmental Science, 2011, 4, 4921.	15.6	196
139	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	10.2	196
140	Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2Films. Helvetica Chimica Acta, 1990, 73, 1788-1803.	1.0	194
141	Efficient Green-Blue-Light-Emitting Cationic Iridium Complex for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2006, 45, 9245-9250.	1.9	193
142	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
143	Stable Single-Layer Light-Emitting Electrochemical Cell Using 4,7-Diphenyl-1,10-phenanthroline-bis(2-phenylpyridine)iridium(III) Hexafluorophosphate. Journal of the American Chemical Society, 2006, 128, 14786-14787.	6.6	191
144	Efficiency <i>vs.</i> stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chemical Science, 2019, 10, 6748-6769.	3.7	191

#	Article	IF	CITATIONS
145	Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Inorganic Chemistry, 2005, 44, 178-180.	1.9	189
146	An Improved Perylene Sensitizer for Solar Cell Applications. ChemSusChem, 2008, 1, 615-618.	3.6	189
147	Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 1094.	15.6	188
148	Subnanometer Ga ₂ O ₃ Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells. Nano Letters, 2012, 12, 3941-3947.	4.5	188
149	Benzotrithiopheneâ€Based Holeâ€Transporting Materials for 18.2 % Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 6270-6274.	7.2	188
150	Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule, 2018, 2, 788-798.	11.7	187
151	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	4.5	185
152	Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Letters, 2018, 3, 1781-1786.	8.8	182
153	Design and Development of Functionalized Cyclometalated Ruthenium Chromophores for Light-Harvesting Applications. Inorganic Chemistry, 2011, 50, 5494-5508.	1.9	180
154	cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible. Journal of the American Chemical Society, 1988, 110, 3686-3687.	6.6	179
155	Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15821-15824.	6.6	179
156	Carboxyethynyl Anchoring Ligands: A Means to Improving the Efficiency of Phthalocyanine ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 4375-4378.	7.2	176
157	Dopantâ€Free Holeâ€Transporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606555.	11.1	171
158	Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy and Environmental Science, 2021, 14, 2906-2953.	15.6	170
159	Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2986-2990.	3.2	169
160	First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 3772-3778.	1.5	169
161	Novel Ruthenium Sensitizers Containing Functionalized Hybrid Tetradentate Ligands:Â Synthesis, Characterization, and INDO/S Analysis. Inorganic Chemistry, 2002, 41, 367-378.	1.9	167
162	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	1.9	167

#	Article	IF	CITATIONS
163	Structure–Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dyeâ€&ensitized Solar Cells. Chemistry - A European Journal, 2009, 15, 5130-5137.	1.7	167
164	Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(iii) complex. Journal of Materials Chemistry, 2007, 17, 5032.	6.7	166
165	Highly Selective and Reversible Optical, Colorimetric, and Electrochemical Detection of Mercury(II) by Amphiphilic Ruthenium Complexes Anchored onto Mesoporous Oxide Films. Advanced Functional Materials, 2006, 16, 189-194.	7.8	165
166	Acid-Induced Degradation of Phosphorescent Dopants for OLEDs and Its Application to the Synthesis of Tris-heteroleptic Iridium(III) Bis-cyclometalated Complexes. Inorganic Chemistry, 2012, 51, 215-224.	1.9	165
167	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie - International Edition, 2016, 55, 7464-7468.	7.2	165
168	Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 2019, 48, 2738-2766.	18.7	165
169	Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2Films. Journal of the American Chemical Society, 2004, 126, 5670-5671.	6.6	164
170	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
171	Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.	15.6	163
172	Yttrium-substituted nanocrystalline TiO ₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6, 1508-1514.	2.8	162
173	The Role of Goldschmidt's Tolerance Factor in the Formation of A ₂ BX ₆ Double Halide Perovskites and its Optimal Range. Small Methods, 2020, 4, 1900426.	4.6	162
174	Encapsulation-free hybrid organic-inorganic light-emitting diodes. Applied Physics Letters, 2006, 89, 183510.	1.5	161
175	Organic dyes incorporating low-band-gap chromophores based on ï€-extended benzothiadiazole for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 192-198.	2.0	160
176	A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 331-337.	2.0	159
177	Organohalide Lead Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2016, 7, 851-866.	2.1	159
178	Optimization of Stable Quasi-Cubic FA _{<i>x</i>} MA _{1–<i>x</i>} PbI ₃ Perovskite Structure for Solar Cells with Efficiency beyond 20%. ACS Energy Letters, 2017, 2, 802-806.	8.8	158
179	Efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells. Chemical Communications, 2011, 47, 2874.	2.2	157
180	Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.	3.2	154

#	Article	IF	CITATIONS
181	The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. ACS Energy Letters, 2017, 2, 2686-2693.	8.8	154
182	Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-State Dye-Sensitized Photovoltaics. Nano Letters, 2005, 5, 1315-1320.	4.5	152
183	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. Advanced Materials, 2016, 28, 3966-3972.	11.1	152
184	High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO ₂ Nanosheets. Advanced Materials, 2012, 24, 2202-2206.	11.1	150
185	Subâ€Nanometer Conformal TiO ₂ Blocking Layer for High Efficiency Solid‣tate Perovskite Absorber Solar Cells. Advanced Materials, 2014, 26, 4309-4312.	11.1	148
186	Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. Journal of Physical Chemistry C, 2011, 115, 23126-23133.	1.5	145
187	The Molecular Engineering of Organic Sensitizers for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2013, 52, 376-380.	7.2	145
188	Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy and Environmental Science, 2012, 5, 6089.	15.6	144
189	Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells. Chemical Communications, 2014, 50, 10971-10974.	2.2	144
190	Effect of Sensitizer Adsorption Temperature on the Performance of Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 9304-9310.	6.6	143
191	Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore. Scientific Reports, 2013, 3, 2446.	1.6	143
192	Amphiphilic Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2004, 43, 4216-4226.	1.9	142
193	Efficient and selective carbon dioxide reduction on low cost protected Cu ₂ O photocathodes using a molecular catalyst. Energy and Environmental Science, 2015, 8, 855-861.	15.6	142
194	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	1.3	141
195	High Molar Extinction Coefficient Organic Sensitizers for Efficient Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 1193-1201.	1.7	140
196	Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy and Environmental Science, 2016, 9, 1681-1686.	15.6	138
197	Stepwise Cosensitization of Nanocrystalline TiO ₂ Films Utilizing Al ₂ O ₃ Layers in Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 8259-8263.	7.2	137
198	A Highâ€Efficiency Panchromatic Squaraine Sensitizer for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 6619-6621.	7.2	136

#	Article	IF	CITATIONS
199	Efficient Perovskite Solar Cells with 13.63 % Efficiency Based on Planar Triphenylamine Hole Conductors. Chemistry - A European Journal, 2014, 20, 10894-10899.	1.7	136
200	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	15.6	136
201	Stable and Highâ€Efficiency Methylammoniumâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905502.	11.1	131
202	Transition Metal Complexes for Photovoltaic and Light Emitting Applications. Structure and Bonding, 2007, , 113-175.	1.0	130
203	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	18.7	130
204	High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(iii) complex with fluorinated bipyridyl ligands. Journal of Materials Chemistry C, 2013, 1, 1070.	2.7	129
205	Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltageâ€Driven Energy‣evel Alignment. Advanced Functional Materials, 2015, 25, 6936-6947.	7.8	129
206	Unraveling the Reasons for Efficiency Loss in Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 3925-3933.	7.8	129
207	Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. Energy and Environmental Science, 2014, 7, 2981.	15.6	127
208	DFT-INDO/S Modeling of New High Molar Extinction Coefficient Charge-Transfer Sensitizers for Solar Cell Applications. Inorganic Chemistry, 2006, 45, 787-797.	1.9	126
209	Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells. Dyes and Pigments, 2011, 90, 304-310.	2.0	126
210	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	10.2	126
211	Highâ€Efficiency Perovskite Solar Cells Using Molecularly Engineered, Thiopheneâ€Rich, Holeâ€Transporting Materials: Influence of Alkyl Chain Length on Power Conversion Efficiency. Advanced Energy Materials, 2017, 7, 1601674.	10.2	125
212	Efficient Platinumâ€Free Counter Electrodes for Dyeâ€Sensitized Solar Cell Applications. ChemPhysChem, 2010, 11, 2814-2819.	1.0	124
213	Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6, 8834.	5.8	122
214	Acid-base behavior in the ground and excited states of ruthenium(II) complexes containing tetraimines or dicarboxybipyridines as protonatable ligands. Inorganic Chemistry, 1989, 28, 4251-4259.	1.9	121
215	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	15.6	121
216	Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Advanced Science, 2018, 5, 1800130.	5.6	120

#	Article	IF	CITATIONS
217	Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells. Nano Letters, 2018, 18, 5467-5474.	4.5	118
218	Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. Journal of Materials Chemistry A, 2014, 2, 19136-19140.	5.2	117
219	Applications of Selfâ€Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Advanced Energy Materials, 2020, 10, 2002989.	10.2	117
220	Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters. Advanced Materials, 2017, 29, 1602940.	11.1	116
221	Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1112-1117.	8.8	115
222	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Dopants. Advanced Materials, 2017, 29, 1702157.	11.1	115
223	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	15.6	114
224	Efficient and Stable Solid-State Light-Emitting Electrochemical Cell Using Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) Hexafluorophosphate. Journal of the American Chemical Society, 2006, 128, 46-47.	6.6	113
225	Substituent Effect on the Meso-Substituted Porphyrins: Theoretical Screening of Sensitizer Candidates for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2009, 113, 10119-10124.	1.1	112
226	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO ₂ . Journal of Materials Chemistry A, 2015, 3, 7219-7223.	5.2	112
227	Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. Journal of Materials Chemistry A, 2020, 8, 2343-2348.	5.2	112
228	Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Letters, 2020, 5, 1386-1395.	8.8	111
229	Synthesis, spectroscopic and a ZINDO study of cis - and trans -(X 2)bis(4,4′-dicarboxylic) Tj ETQq1 1 0.784314 2000, 208, 213-225.	rgBT /Ove 9.5	erlock 10 Tf 110
230	Charged Bis-Cyclometalated Iridium(III) Complexes with Carbene-Based Ancillary Ligands. Inorganic Chemistry, 2013, 52, 10292-10305.	1.9	110
231	Targeting Ideal Dualâ€Absorber Tandem Water Splitting Using Perovskite Photovoltaics and Culn <i>_x</i> Ga _{1â€<i>x</i>} Se ₂ Photocathodes. Advanced Energy Materials, 2015, 5, 1501520.	10.2	109
232	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	5.8	108
233	2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.	5.8	108
234	Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5318.	2.2	107

#	Article	IF	CITATIONS
235	Influence of Halogen Atoms on a Homologous Series of Bis-Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2012, 51, 799-811.	1.9	107
236	Temperature Dependence of Transport Properties of Spiro-MeOTAD as a Hole Transport Material in Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 2292-2301.	7.3	107
237	Pbl ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	6.6	107
238	Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 11428-11433.	6.6	107
239	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016, 1, 107-112.	8.8	105
240	High efficient donor–acceptor ruthenium complex for dye-sensitized solar cell applications. Energy and Environmental Science, 2009, 2, 100-102.	15.6	104
241	Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO ₂ Blocking Layer under Reverse Bias. Journal of Physical Chemistry Letters, 2014, 5, 3931-3936.	2.1	104
242	Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy, 2018, 48, 63-72.	8.2	103
243	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	5.2	103
244	Stepwise Assembly of Tris-Heteroleptic Polypyridyl Complexes of Ruthenium(II). Inorganic Chemistry, 1998, 37, 5251-5259.	1.9	102
245	Enhanced intensities of the ligand-to-metal charge-transfer transitions in ruthenium(III) and osmium(III) complexes of substituted bipyridines. The Journal of Physical Chemistry, 1993, 97, 9607-9612.	2.9	101
246	Trash into Treasure: Î′â€FAPbI ₃ Polymorph Stabilized MAPbI ₃ Perovskite with Power Conversion Efficiency beyond 21%. Advanced Materials, 2018, 30, e1707143.	11.1	101
247	Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells. ChemPhysChem, 2005, 6, 1253-1258.	1.0	99
248	Molecular Wiring of Nanocrystals:Â NCS-Enhanced Cross-Surface Charge Transfer in Self-Assembled Ru-Complex Monolayer on Mesoscopic Oxide Films. Journal of the American Chemical Society, 2006, 128, 4446-4452.	6.6	99
249	Core/Shell PbSe/PbS QDs TiO ₂ Heterojunction Solar Cell. Advanced Functional Materials, 2013, 23, 2736-2741.	7.8	99
250	The Role of Insulating Oxides in Blocking the Charge Carrier Recombination in Dye‧ensitized Solar Cells. Advanced Functional Materials, 2014, 24, 1615-1623.	7.8	99
251	Electronic Structures and Absorption Spectra of Linkage Isomers of Trithiocyanato (4,4â€~,4â€~ â€~-Tricarboxy-2,2â€~:6,2â€~ â€~-terpyridine) Ruthenium(II) Complexes:  A DFT Study. I 2006, 45, 7600-7611.	norganic (Ch es nistry,
252	Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand. Inorganic Chemistry, 2011, 50, 451-462.	1.9	98

#	Article	IF	CITATIONS
253	Ruthenium Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 52.	1.2	98
254	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nature Communications, 2021, 12, 6394.	5.8	98
255	High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 3077-3083.	4.5	97
256	Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. Energy and Environmental Science, 2011, 4, 189-194.	15.6	97
257	Carbazole-based enamine: Low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy, 2017, 32, 551-557.	8.2	97
258	Energy and Hole Transfer between Dyes Attached to Titania in Cosensitized Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 10662-10667.	6.6	96
259	Structure–property relationships based on Hammett constants in cyclometalated iridium(<scp>iii</scp>) complexes: their application to the design of a fluorine-free FIrPic-like emitter. Dalton Transactions, 2014, 43, 5667-5679.	1.6	96
260	Lead and HTM Free Stable Twoâ€Ðimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie - International Edition, 2019, 58, 1072-1076.	7.2	96
261	Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2. Chemical Physics, 2002, 285, 127-132.	0.9	95
262	Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chemical Science, 2011, 2, 1145.	3.7	95
263	Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4330-4333.	2.4	95
264	Instability in CH3NH3PbI3 perovskite solar cells due to elemental migration and chemical composition changes. Scientific Reports, 2017, 7, 15406.	1.6	95
265	Diphenylamine‣ubstituted Carbazoleâ€Based Hole Transporting Materials for Perovskite Solar Cells: Influence of Isomeric Derivatives. Advanced Functional Materials, 2018, 28, 1704351.	7.8	95
266	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	4.5	95
267	Panchromatic Response in Solid‣tate Dye‣ensitized Solar Cells Containing Phosphorescent Energy Relay Dyes. Angewandte Chemie - International Edition, 2009, 48, 9277-9280.	7.2	94
268	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
269	The Role of Ï€â€Bridges in Highâ€Efficiency DSCs Based on Unsymmetrical Squaraines. Chemistry - A European Journal, 2013, 19, 1819-1827.	1.7	92
270	Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COOâ^'-2,2′-bpy)2(X)2]4â^' (X=NCS, Cl) dyes in water solution. Chemical Physics Letters, 2005, 41 115-120.	.51.2	91

#	Article	IF	CITATIONS
271	Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 16816-16820.	1.5	91
272	Stable Green Electroluminescence from an Iridium Tris-Heteroleptic Ionic Complex. Chemistry of Materials, 2012, 24, 1896-1903.	3.2	91
273	High-efficiency and stable quasi-solid-state dye-sensitized solar cell based on low molecular mass organogelator electrolyte. Journal of Materials Chemistry A, 2015, 3, 2344-2352.	5.2	91
274	Molecularly Engineered Phthalocyanines as Holeâ€Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5%. Advanced Energy Materials, 2017, 7, 1601733.	10.2	90
275	Dye-Sensitized Solar Cells Incorporating a "Liquid―Hole-Transporting Material. Nano Letters, 2006, 6, 2000-2003.	4.5	89
276	A new generation of platinum and iodine free efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 10631.	1.3	89
277	A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II). Dalton Transactions RSC, 2000, , 2817-2822.	2.3	86
278	A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements. IEEE Sensors Journal, 2008, 8, 29-37.	2.4	86
279	Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups. Angewandte Chemie - International Edition, 2012, 51, 1895-1898.	7.2	86
280	Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb ²⁺ Ions in Rainwater Polluted by Leaking Perovskite Solar Cells. Analytical Chemistry, 2016, 88, 12316-12322.	3.2	86
281	Isomerism effect on the photovoltaic properties of benzotrithiophene-based hole-transporting materials. Journal of Materials Chemistry A, 2017, 5, 8317-8324.	5.2	86
282	Effect of Interfacial Engineering in Solidâ€6tate Nanostructured Sb ₂ S ₃ Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 29-33.	10.2	85
283	Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science, 2016, 7, 6068-6075.	3.7	85
284	All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238.	8.2	85
285	An Efficient Approach to Fabricate Air‣table Perovskite Solar Cells via Addition of a Selfâ€Polymerizing Ionic Liquid. Advanced Materials, 2020, 32, e2003801.	11.1	84
286	Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study. Chemistry of Materials, 2002, 14, 3556-3563.	3.2	83
287	Non-aggregated Zn(<scp>ii</scp>)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.	1.6	83
288	CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 114-121.	2.5	83

#	Article	IF	CITATIONS
289	Time-dependent density functional theory study of squaraine dye-sensitized solar cells. Chemical Physics Letters, 2009, 475, 49-53.	1.2	82
290	Universal approach toward high-efficiency two-dimensional perovskite solar cells <i>via</i> a vertical-rotation process. Energy and Environmental Science, 2020, 13, 3093-3101.	15.6	82
291	Soft Templateâ€Controlled Growth of Highâ€Quality CsPbl ₃ Films for Efficient and Stable Solar Cells. Advanced Energy Materials, 2020, 10, 1903751.	10.2	82
292	A deep-blue emitting charged bis-cyclometallated iridium(<scp>iii</scp>) complex for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2013, 1, 58-68.	2.7	81
293	Controlled synthesis of TiO ₂ nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 1662-1667.	5.2	80
294	Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays. Small, 2015, 11, 5533-5539.	5.2	80
295	Low-temperature, solution-deposited metal chalcogenide films as highly efficient counter electrodes for sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 6315-6323.	5.2	80
296	An Insight into Atmospheric Plasma Jet Modified ZnO Quantum Dots Thin Film for Flexible Perovskite Solar Cell: Optoelectronic Transient and Charge Trapping Studies. Journal of Physical Chemistry C, 2015, 119, 10379-10390.	1.5	80
297	A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1400980.	10.2	80
298	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	1.9	80
299	Enhanced Interfacial Binding and Electron Extraction Using Boronâ€Đoped TiO ₂ for Highly Efficient Hysteresisâ€Free Perovskite Solar Cells. Advanced Science, 2019, 6, 1901213.	5.6	80
300	Analysis of Photocarrier Dynamics at Interfaces in Perovskite Solar Cells by Time-Resolved Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 26805-26815.	1.5	79
301	Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy, 2018, 50, 220-228.	8.2	79
302	A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 798-805.	1.2	78
303	Sublimation Not an Innocent Technique: A Case of Bis-Cyclometalated Iridium Emitter for OLED. Inorganic Chemistry, 2008, 47, 6575-6577.	1.9	78
304	Design of Dye Acceptors for Photovoltaics from First-Principles Calculations. Journal of Physical Chemistry C, 2011, 115, 9276-9282.	1.5	78
305	A highly hindered bithiophene-functionalized dispiro-oxepine derivative as an efficient hole transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18259-18264.	5.2	78
306	Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy, 2019, 58, 105-111.	8.2	78

#	Article	IF	CITATIONS
307	A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100405.	5.6	77
308	Towards high-performance DPP-based sensitizers for DSC applications. Chemical Communications, 2012, 48, 10727.	2.2	76
309	Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells. Chemistry of Materials, 2013, 25, 3391-3397.	3.2	76
310	Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives. Advanced Functional Materials, 2019, 29, 1902021.	7.8	76
311	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
312	Artificial analogues of the oxygen-evolving complex in photosynthesis: the oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L = 2,2'-bipyridyl-4,4'-dicarboxylate. Journal of Molecular Catalysis, 1989, 52, 63-84.	1.2	75
313	Photophysics and photoredox reactions of ligand-bridged binuclear polypyridyl complexes of ruthenium(II) and of their monomeric analogs. Inorganic Chemistry, 1990, 29, 1888-1897.	1.9	75
314	Solid-State Dye-Sensitized Solar Cells using Ordered TiO ₂ Nanorods on Transparent Conductive Oxide as Photoanodes. Journal of Physical Chemistry C, 2012, 116, 3266-3273.	1.5	75
315	Inter-chromophore electronic interactions in ligand-bridged polynuclear complexes: a comparative study of various bridging ligands. Inorganica Chimica Acta, 1994, 226, 213-230.	1.2	74
316	Redox regulation in ruthenium(II) polypyridyl complexes and their application in solar energy conversion. Journal of the Chemical Society Dalton Transactions, 1997, , 4571-4578.	1.1	74
317	Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes. Inorganic Chemistry, 2012, 51, 2263-2271.	1.9	74
318	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	10.2	74
319	Fiber‧haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	10.2	74
320	Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochemistry Communications, 2009, 11, 909-912.	2.3	73
321	A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response. Journal of Materials Chemistry A, 2014, 2, 11586-11590.	5.2	73
322	Understanding the Impact of Bromide on the Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2015, 27, 7221-7228.	11.1	73
323	Beneficial Role of Reduced Graphene Oxide for Electron Extraction in Highly Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 3040-3044.	3.6	73
324	Indolizineâ€Based Donors as Organic Sensitizer Components for Dye‣ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401629.	10.2	71

#	Article	IF	CITATIONS
325	Dimension-Controlled Growth of Antimony-Based Perovskite-like Halides for Lead-Free and Semitransparent Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 17062-17069.	4.0	71
326	Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. Journal of Materials Chemistry, 2010, 20, 3280.	6.7	70
327	Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 3487-3493.	4.0	70
328	Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17166-17170.	1.5	70
329	Twenty-five years of low-cost solar cells. Nature, 2016, 538, 463-464.	13.7	70
330	α sPbl ₃ Bilayers via Oneâ€5tep Deposition for Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002632.	11.1	70
331	Influence of Donor Groups of Organic Dâ^ï€â€"A Dyes on Open-Circuit Voltage in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1572-1578.	1.5	69
332	Efficient nearâ€IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines. Journal of Porphyrins and Phthalocyanines, 1999, 3, 230-237.	0.4	69
333	Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine. Inorganica Chimica Acta, 1997, 261, 129-140.	1.2	68
334	Host–guest blue light-emitting electrochemical cells. Journal of Materials Chemistry C, 2014, 2, 1605-1611.	2.7	68
335	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
336	Selfâ€Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910620.	7.8	68
337	Molecular Engineering of Efficient Organic Sensitizers Incorporating a Binary π-Conjugated Linker Unit for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 14646-14653.	1.5	67
338	Engineering of thiocyanate-free Ru(ii) sensitizers for high efficiency dye-sensitized solar cells. Chemical Science, 2013, 4, 2423.	3.7	67
339	Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3675-3681.	2.1	67
340	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
341	Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. Journal of Materials Chemistry C, 2018, 6, 8874-8878.	2.7	67
342	Inkjetâ€Printed Mesoporous TiO ₂ and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technology, 2019, 7, 317-324.	1.8	67

#	Article	IF	CITATIONS
343	Evaluation of a Ruthenium Oxyquinolate Architecture for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2012, 51, 1-3.	1.9	66
344	Photovoltaic and Amplified Spontaneous Emission Studies of Highâ€Quality Formamidinium Lead Bromide Perovskite Films. Advanced Functional Materials, 2016, 26, 2846-2854.	7.8	66
345	Defect Suppression in Oriented 2D Perovskite Solar Cells with Efficiency over 18% via Rerouting Crystallization Pathway. Advanced Energy Materials, 2021, 11, .	10.2	66
346	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
347	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
348	Unravel the Impact of Anchoring Groups on the Photovoltaic Performances of Diketopyrrolopyrrole Sensitizers for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2389-2396.	3.2	65
349	Additiveâ€Free Transparent Triarylamineâ€Based Polymeric Holeâ€Transport Materials for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2567-2571.	3.6	65
350	Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process. Materials Letters, 2016, 164, 498-501.	1.3	65
351	Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synthetic Metals, 2003, 138, 333-339.	2.1	64
352	Nanostructured Composite Films for Dye-Sensitized Solar Cells by Electrostatic Layer-by-Layer Deposition. Chemistry of Materials, 2006, 18, 5395-5397.	3.2	64
353	Harnessing the open-circuit voltage via a new series of Ru(ii) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries. Energy and Environmental Science, 2013, 6, 859.	15.6	64
354	Rational design of triazatruxene-based hole conductors for perovskite solar cells. RSC Advances, 2015, 5, 53426-53432.	1.7	64
355	Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes. Journal of Power Sources, 2015, 275, 80-89.	4.0	64
356	Tuning of the CT excited state and validity of the energy gap law in mixed ligand complexes of Ru(II) containing 4,4′-dicarboxy-2,2′-bipyridine. Chemical Physics Letters, 1992, 193, 292-297.	1.2	63
357	Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode. Physical Chemistry Chemical Physics, 2010, 12, 1916.	1.3	63
358	Nanocomposites Containing Neutral Blue Emitting Cyclometalated Iridium(III) Emitters for Oxygen Sensing. Chemistry of Materials, 2012, 24, 2330-2338.	3.2	63
359	Pulsed-current versus constant-voltage light-emitting electrochemical cells with trifluoromethyl-substituted cationic iridium(iii) complexes. Journal of Materials Chemistry C, 2013, 1, 2241.	2.7	63
360	Effect of Extended Ï€-Conjugation of the Donor Structure of Organic D–Aâ~"i€â€"A Dyes on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16486-16493.	1.5	63

#	Article	IF	CITATIONS
361	Luminescence and intramolecular energy-transfer processes in isomeric cyano-bridged rhenium(I)-rhenium(I) and rhenium(I)-ruthenium(II)-rhenium(I) polypyridyl complexes. Inorganic Chemistry, 1992, 31, 5243-5253.	1.9	62
362	Efficient orange light-emitting electrochemical cells. Journal of Materials Chemistry, 2012, 22, 19264.	6.7	62
363	Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant. ChemSusChem, 2016, 9, 2708-2714.	3.6	62
364	Heteroatom Effect on Starâ€5haped Holeâ€Transporting Materials for Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1801734.	7.8	62
365	High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1998-2003.	1.5	61
366	Theoretical Screening of â^'NH ₂ -, â^'OH-, â^'CH ₃ -, â^'F-, and â^'SH-Substituted Porphyrins As Sensitizer Candidates for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2010, 114, 1973-1979.	1.1	61
367	Extended ï€â€Bridge in Organic Dyeâ€Sensitized Solar Cells: the Longer, the Better?. Advanced Energy Materials, 2014, 4, 1301485.	10.2	61
368	Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.	3.6	61
369	Excited-state interactions in ligand-bridged chromophore-quencher complexes containing rhodium(III) and ruthenium(II) polypyridyl units. The Journal of Physical Chemistry, 1992, 96, 5865-5872.	2.9	60
370	The reorganization energy of intermolecular hole hopping between dyes anchored to surfaces. Chemical Science, 2014, 5, 281-290.	3.7	60
371	Enhanced TiO ₂ /MAPbI ₃ Electronic Coupling by Interface Modification with PbI ₂ . Chemistry of Materials, 2016, 28, 3612-3615.	3.2	60
372	Employing 2Dâ€Perovskite as an Electron Blocking Layer in Highly Efficient (18.5%) Perovskite Solar Cells with Printable Low Temperature Carbon Electrode. Advanced Energy Materials, 2022, 12, .	10.2	60
373	Perovskite Solar Cells Based on Nanocolumnar Plasmaâ€Đeposited ZnO Thin Films. ChemPhysChem, 2014, 15, 1148-1153.	1.0	59
374	Facile synthesis of a bulky BPTPA donor group suitable for cobalt electrolyte based dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5535.	5.2	58
375	Thermal stability of cis-dithiocyanato(2,2′-bipyridyl4,4′dicarboxylate) ruthenium(II) photosensitizer in the free form and on nanocrystalline TiO2 films. Thermochimica Acta, 2000, 348, 105-114.	1.2	57
376	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.	1.6	57
377	Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy and Environmental Science, 2019, 12, 1910-1917.	15.6	57
378	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	1.7	56

#	Article	IF	CITATIONS
379	Evaluating the Critical Thickness of TiO ₂ Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dyeâ€&ensitized Solar Cells. Advanced Functional Materials, 2013, 23, 2775-2781.	7.8	56
380	Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 34414-34421.	4.0	56
381	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	5.2	56
382	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2021, 60, 20489-20497.	7.2	56
383	Modeling Ruthenium-Dye-Sensitized TiO ₂ Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 18124-18131.	1.5	55
384	Tuning the photophysical properties of cationic iridium(<scp>iii</scp>) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through functionalized 2,2′-bipyridineligands: blue but not blue enough. Dalton Transactions, 2013, 42, 1073-1087.	1.6	54
385	Benzotrithiopheneâ€Based Holeâ€Transporting Materials for 18.2 % Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 6378-6382.	1.6	54
386	Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000910.	10.2	54
387	Amphiphilic ruthenium dye as an ideal sensitizer in conversion of light to electricity using ionic liquid crystal electrolyte. Electrochemistry Communications, 2007, 9, 1134-1138.	2.3	53
388	Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of Dâ~π–A Dyes. Journal of Physical Chemistry C, 2012, 116, 16876-16884.	1.5	53
389	Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 79-86.	/ 2.0	52
390	High Extinction Coefficient "Antenna―Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. Journal of Physical Chemistry C, 2008, 112, 7562-7566.	1.5	52
391	Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-transporting Materials. Nano Energy, 2016, 30, 853-857.	8.2	52
392	Efficient solid-state dye sensitized solar cells: The influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy, 2016, 19, 455-470.	8.2	52
393	Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry C, 2017, 5, 2833-2843.	2.7	52
394	Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustainable Energy and Fuels, 2020, 4, 528-537.	2.5	52
395	Quinolinate zinc complexes as electron transporting layers in organic light-emitting diodes. Chemical Physics Letters, 1999, 315, 405-410.	1.2	51
396	Sensor technologies based on a cellulose supported platform. Chemical Communications, 2007, , 2025-2027.	2.2	51

#	Article	IF	CITATIONS
397	Panchromatic Crossâ€&ubstituted Squaraines for Dyeâ€&ensitized Solar Cell Applications. ChemSusChem, 2009, 2, 621-624.	3.6	51
398	Incorporating Multiple Energy Relay Dyes in Liquid Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2011, 12, 657-661.	1.0	51
399	Metalâ€Halide Perovskites for Gate Dielectrics in Fieldâ€Effect Transistors and Photodetectors Enabled by PMMA Liftâ€Off Process. Advanced Materials, 2018, 30, e1707412.	11.1	51
400	Tetrathienoanthracene and Tetrathienylbenzene Derivatives as Holeâ€Transporting Materials for Perovskite Solar Cell. Advanced Energy Materials, 2018, 8, 1800681.	10.2	51
401	Bisâ€Donor–Bisâ€Acceptor Tribranched Organic Sensitizers for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2011, 2011, 6195-6205.	1.2	50
402	The evolution of triphenylamine hole transport materials for efficient perovskite solar cells. Chemical Society Reviews, 2022, 51, 5974-6064.	18.7	50
403	Phenomenally High Molar Extinction Coefficient Sensitizer with "Donorâ^'Acceptor―Ligands for Dye-Sensitized Solar Cell Applications. Inorganic Chemistry, 2008, 47, 2267-2273.	1.9	49
404	Hole-conducting mediator for stable Sb ₂ S ₃ -sensitized photoelectrochemical solar cells. Journal of Materials Chemistry, 2012, 22, 1107-1111.	6.7	49
405	Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2642-2648.	3.2	49
406	Extreme Tuning of Redox and Optical Properties of Cationic Cyclometalated Iridium(III) Isocyanide Complexes. Organometallics, 2013, 32, 460-467.	1.1	49
407	Sterically Hindered Phthalocyanines for Dye‣ensitized Solar Cells: Influence of the Distance between the Aromatic Core and the Anchoring Group. ChemPhysChem, 2014, 15, 1033-1036.	1.0	49
408	Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cationâ€Based Perovskite Films. ChemSusChem, 2017, 10, 3846-3853.	3.6	49
409	The Electronic Role of the TiO2Light-Scattering Layer in Dye-Sensitized Solar Cells. Zeitschrift Fur Physikalische Chemie, 2007, 221, 319-327.	1.4	48
410	Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: Application and working insights. Applied Surface Science, 2019, 478, 607-614.	3.1	48
411	Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells. Journal of Power Sources, 2011, 196, 596-599.	4.0	47
412	Blue Phosphorescence of Trifluoromethyl- and Trifluoromethoxy-Substituted Cationic Iridium(III) Isocyanide Complexes. Organometallics, 2012, 31, 6288-6296.	1.1	47
413	Near-infrared sensitization of solid-state dye-sensitized solar cells with a squaraine dye. Applied Physics Letters, 2012, 100, .	1.5	47
414	Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence. Advanced Energy Materials, 2013, 3, 1338-1343.	10.2	47

#	Article	IF	CITATIONS
415	Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2332-2339.	5.2	47
416	Lowâ€Cost TiS ₂ as Holeâ€Transport Material for Perovskite Solar Cells. Small Methods, 2017, 1, 1700250.	4.6	47
417	Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 5713-5720.	2.1	47
418	Ligand to metal charge transfer transitions in Ru(III) and Os(III) complexes of substituted 2,2'-bipyridines. Coordination Chemistry Reviews, 1994, 132, 259-264.	9.5	46
419	Sensitized Electroluminescence on Mesoporous Oxide Semiconductor Filmsâ€. Journal of Physical Chemistry B, 1997, 101, 2558-2563.	1.2	46
420	Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films. Analyst, The, 2007, 132, 929.	1.7	46
421	Air-Stable n–i–p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material. ACS Applied Energy Materials, 2019, 2, 4890-4899.	2.5	46
422	Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6435-6442.	3.2	46
423	Influence of Sodium Cations of N3 Dye on the Photovoltaic Performance and Stability of Dye‧ensitized Solar Cells. ChemPhysChem, 2009, 10, 1117-1124.	1.0	45
424	Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics. MRS Bulletin, 2015, 40, 641-645.	1.7	45
425	A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chemical Communications, 2016, 52, 8424-8427.	2.2	45
426	Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes. Topics in Current Chemistry, 2017, 375, 39.	3.0	45
427	Enhanced stability of α-phase FAPbI ₃ perovskite solar cells by insertion of 2D (PEA) ₂ PbI ₄ nanosheets. Journal of Materials Chemistry A, 2020, 8, 8058-8064.	5.2	45
428	Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 434.	15.6	44
429	Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 5944-5951.	5.2	44
430	Organic dyes with a novel anchoring group for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 168-174.	2.0	43
431	Unsymmetrical squaraine dimer with an extended π-electron framework: An approach in harvesting near infra-red photons for energy conversion. Dyes and Pigments, 2010, 87, 30-38.	2.0	43
432	A new familiy of heteroleptic ruthenium(ii) polypyridyl complexes for sensitization of nanocrystalline TiO2 films. Dalton Transactions, 2011, 40, 4497.	1.6	43

#	Article	IF	CITATIONS
433	Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers. Advanced Science, 2020, 7, 2001014.	5.6	43
434	Efficient Photosensitization of Nanocrystalline TiO2Films by a New Class of Sensitizer: cis-Dithiocyanato bis(4,7-dicarboxy-1,10-phenanthroline)ruthenium(II). Chemistry Letters, 1998, 27, 1005-1006.	0.7	42
435	Quantum-Confined ZnO Nanoshell Photoanodes for Mesoscopic Solar Cells. Nano Letters, 2014, 14, 1190-1195.	4.5	42
436	Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer. Journal of Materials Chemistry A, 2019, 7, 8073-8077.	5.2	42
437	Green-Emitting Lead-Free Cs ₄ SnBr ₆ Zero-Dimensional Perovskite Nanocrystals with Improved Air Stability. Journal of Physical Chemistry Letters, 2020, 11, 618-623.	2.1	42
438	Novel luminescent Ir(III) dyes for developing highly sensitive oxygen sensing films. Talanta, 2010, 82, 620-626.	2.9	41
439	D-ï€-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 14248-14252.	1.6	41
440	Molecular Engineering of 2-Quinolinone Based Anchoring Groups for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16896-16903.	1.5	41
441	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24173-24177.	1.3	41
442	Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805438.	11.1	41
443	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 518-529.	2.0	40
444	4,9-Dihydro-4,4,9,9-tetrahexyl- <i>s</i> -indaceno[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene as a π-Spacer of Donorâ^'ï€â€"Acceptor Dye and Its Photovoltaic Performance with Liquid and Solid-State Dye-Sensitized Solar Cells. Organic Letters, 2014, 16, 106-109.	2.4	40
445	Dimensionally Engineered Perovskite Heterostructure for Photovoltaic and Optoelectronic Applications. Advanced Energy Materials, 2019, 9, 1902470.	10.2	40
446	Getting the Right Twist: Influence of Donor–Acceptor Dihedral Angle on Exciton Kinetics and Singlet–Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 27778-27784.	1.5	40
447	Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells. Chemistry of Materials, 2020, 32, 6416-6424.	3.2	40
448	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	2.8	40
449	Photophysical and redox properties of mono- and bi-nuclear complexes of osmium(II) with 2,3-bis(2-pyridyl)pyrazine as bridging ligand. Chemical Physics Letters, 1989, 158, 45-50.	1.2	39
450	Adsorption Studies of Counterions Carried by the Sensitizercis-Dithiocyanato(2,2â€~-bipyridyl-4,4â€~-dicarboxylate) Ruthenium(II) on Nanocrystalline TiO2Films. Langmuir, 2000, 16, 8525-8528.	1.6	39

#	Article	IF	CITATIONS
451	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	1.4	39
452	High-voltage (1.8V) tandem solar cell system using a GaAs/AlXGa(1â^'X)As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. Solar Energy, 2011, 85, 1220-1225.	2.9	39
453	Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic–Inorganic Lead Iodide Perovskite Solar Cell. Chemistry of Materials, 2014, 26, 4675-4678.	3.2	39
454	Molecular Design Principles for Nearâ€Infrared Absorbing and Emitting Indolizine Dyes. Chemistry - A European Journal, 2016, 22, 15536-15542.	1.7	39
455	Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials. Nanoscale, 2016, 8, 8530-8535.	2.8	39
456	Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 1792-1800.	6.6	39
457	Novel oxygen sensitive complexes for optical oxygen sensing. Talanta, 2007, 71, 242-250.	2.9	38
458	Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. Nano Energy, 2012, 1, 6-12.	8.2	38
459	An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous Al2O3 as the hybrid interfacial hole-transporting layer. Physical Chemistry Chemical Physics, 2016, 18, 27083-27089.	1.3	38
460	Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells. Joule, 2022, 6, 1689-1709.	11.7	38
461	Artificial photosynthesis based on dye-sensitized nanocrystalline TiO2 solar cells. Inorganica Chimica Acta, 2008, 361, 735-745.	1.2	37
462	Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO2. Nano Today, 2010, 5, 91-98.	6.2	37
463	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4497-4502.	3.2	37
464	Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400217.	10.2	37
465	Near-IR Photoresponse of Ruthenium Dipyrrinate Terpyridine Sensitizers in the Dye-Sensitized Solar Cells. Inorganic Chemistry, 2014, 53, 5417-5419.	1.9	37
466	Stable Quasi-Solid-State Dye-Sensitized Solar Cells Using Novel Low Molecular Mass Organogelators and Room-Temperature Molten Salts. Journal of Physical Chemistry C, 2014, 118, 16718-16726.	1.5	37
467	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie, 2016, 128, 7590-7594.	1.6	37
468	Lowâ€Cost Perovskite Solar Cells Employing Dimethoxydiphenylamineâ€Substituted Bistricyclic Aromatic Enes as Hole Transport Materials. ChemSusChem, 2017, 10, 3825-3832.	3.6	37

#	Article	IF	CITATIONS
469	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
470	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11266-11272.	7.2	37
471	Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Solar Energy, 2011, 85, 1189-1194.	2.9	36
472	Cationic Iridium(III) Complexes with Two Carbene-Based Cyclometalating Ligands: Cis Versus Trans Isomers. Inorganic Chemistry, 2015, 54, 3031-3042.	1.9	36
473	Growth Engineering of CH ₃ NH ₃ PbI ₃ Structures for Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2016, 6, 1501358.	10.2	36
474	Threeâ€ŧerminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions. , 2022, 1, 148-156.		36
475	Synthesis and photophysical properties of trans-dithiocyanato bis(4,4â€2-dicarboxylic acid-2,2â€2-bipyridine) ruthenium(II) charge transfer sensitizer. Inorganica Chimica Acta, 1999, 296, 250-253.	1.2	35
476	A Dendritic Oligothiophene Ruthenium Sensitizer for Stable Dyeâ€Sensitized Solar Cells. ChemSusChem, 2009, 2, 761-768.	3.6	35
477	Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO ₂ films: a comparison of two different ruthenium complexes. Physical Chemistry Chemical Physics, 2011, 13, 1575-1584.	1.3	35
478	Modulating dye E(S+/S*) with efficient heterocyclic nitrogen containing acceptors for DSCs. Chemical Communications, 2012, 48, 2295.	2.2	35
479	Solid‧tate Dye‧ensitized Solar Cells Using a Novel Class of Ullazine Dyes as Sensitizers. Advanced Energy Materials, 2013, 3, 496-504.	10.2	35
480	Ultrafast Relaxation Dynamics of Osmium–Polypyridine Complexes in Solution. Journal of Physical Chemistry C, 2013, 117, 15958-15966.	1.5	35
481	Analysis of Photoinduced Carrier Recombination Kinetics in Flat and Mesoporous Lead Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 182-187.	8.8	35
482	Stable perovskite solar cells using thiazolo [5,4-d]thiazole-core containing hole transporting material. Nano Energy, 2018, 49, 372-379.	8.2	35
483	Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8211-8220.	3.2	35
484	Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells. Organic Electronics, 2019, 65, 375-380.	1.4	35
485	Lead Sequestration from Perovskite Solar Cells Using a Metal–Organic Framework Polymer Composite. Energy Technology, 2020, 8, 2000239.	1.8	35
486	Efficient blue light-emitting diodes based on a classical "push–pull―architecture molecule 4,4′-di-(2-(2,5-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. Journal of Materials Chemistry, 2006, 16, 4468-4474.	6.7	34

#	Article	IF	CITATIONS
487	Acid–base properties of the N3 ruthenium(ii) solar cell sensitizer: a combined experimental and computational analysis. Dalton Transactions, 2012, 41, 11841.	1.6	34
488	Ultrafast charge carrier dynamics in CH ₃ NH ₃ PbI ₃ : evidence for hot hole injection into spiro-OMeTAD. Journal of Materials Chemistry C, 2016, 4, 5922-5931.	2.7	34
489	Ruthenium phenanthroimidazole complexes for near infrared light-emitting electrochemical cells. Journal of Materials Chemistry C, 2016, 4, 9674-9679.	2.7	34
490	A Computational and Experimental Study of Thieno[3,4â€b]thiophene as a Proaromatic Ï€â€Bridge in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 694-703.	1.7	34
491	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	3.1	34
492	Convergent Synthesis of Nearâ€Infrared Absorbing, "Push–Pullâ€; Bisthiopheneâ€Substituted, Zinc(II) Phthalocyanines and their Application in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 6343-6348.	1.7	33
493	Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013, 1, 10142.	5.2	33
494	Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances. APL Materials, 2019, 7, .	2.2	33
495	D–π–Aâ€Type Triazatruxeneâ€Based Dopantâ€Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000173.	3.1	33
496	The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA _{0.5} FA _{0.5} Pbl ₃ Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001300.	10.2	33
497	New Horizons for Perovskite Solar Cells Employing DNA TMA as the Holeâ€Transporting Material. ChemSusChem, 2016, 9, 1736-1742.	3.6	32
498	A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale, 2016, 8, 6335-6340.	2.8	32
499	Perovskite Solar Cells Using Surfaceâ€Modified NiO _{<i>x</i>} Nanoparticles as Hole Transport Materials in nâ€iâ€p Configuration. Solar Rrl, 2019, 3, 1900172.	3.1	32
500	SnO ₂ /TiO ₂ Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3424-3430.	2.5	32
501	Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy. Journal of the Electrochemical Society, 1993, 140, L92-L94.	1.3	31
502	Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO< International Journal of Photoenergy, 2009, 2009, 1-8.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math 	:/mml:mte	xt ³¹ /mml:mr
503	Weakly Conjugated Hybrid Zinc Porphyrin Sensitizers for Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2016, 26, 5550-5559.	7.8	31
504	Benzothiadiazole Aryl-amine Based Materials as Efficient Hole Carriers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 32712-32718.	4.0	31

#	Article	IF	CITATIONS
505	Molecular engineering of simple carbazole-arylamine hole-transport materials for perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 1875-1882.	2.5	31
506	Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. Dalton Transactions, 2015, 44, 6439-6448.	1.6	30
507	Asymmetric Cathodoluminescence Emission in CH ₃ NH ₃ PbI _{3–<i>x</i>} Br _{<i>x</i>} Perovskite Single Crystals. ACS Photonics, 2016, 3, 947-952.	3.2	30
508	Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core. ACS Applied Materials & Interfaces, 2021, 13, 28214-28221.	4.0	30
509	Laser Processing Methods for Perovskite Solar Cells and Modules. Advanced Energy Materials, 2021, 11, 2101149.	10.2	30
510	Determination of pKaValues of 4-Phosphonato-2,2â€~;6â€~,2â€~Ââ€~-Terpyridine and Its Ruthenium(II)-Based Photosensitizer by NMR, Potentiometric, and Spectrophotometric Methods. Inorganic Chemistry, 2000, 39, 4542-4547.	1.9	29
511	Packing of ruthenium sensitizer molecules on mostly exposed faces of nanocrystalline TiO2: crystal structure of (NBu4+)2[Ru(H2tctterpy)(NCS)3]2â~`·0.5 DMSO. Applied Organometallic Chemistry, 2002, 16, 635-642.	1.7	29
512	Functionalized alkyne bridged dendron based chromophores for dye-sensitized solar cell applications. Energy and Environmental Science, 2009, 2, 1082.	15.6	29
513	Low-voltage, high-brightness and deep-red light-emitting electrochemical cells (LECs) based on new ruthenium(<scp>ii</scp>) phenanthroimidazole complexes. Dalton Transactions, 2016, 45, 7195-7199.	1.6	29
514	Templateâ€Assisted Formation of Highâ€Quality αâ€Phase HC(NH 2) 2 PbI 3 Perovskite Solar Cells. Advanced Science, 2019, 6, 1901591.	5.6	29
515	Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis. Solar Energy Materials and Solar Cells, 2019, 195, 291-298.	3.0	29
516	Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives. Angewandte Chemie - International Edition, 2020, 59, 5303-5307.	7.2	29
517	Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 199-211.	2.5	29
518	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29
519	Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100598.	2.8	29
520	In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit. Nano Energy, 2022, 100, 107468.	8.2	29
521	Transient absorptions due to mixed valence species in the excited state absorption spectra of cyano-bridged trinuclear polypyridyl complexes of ruthenium(II). The Journal of Physical Chemistry, 1992, 96, 10587-10590.	2.9	28
522	Design and Development of Novel Linker for PbS Quantum Dots/TiO ₂ Mesoscopic Solar cell. ACS Applied Materials & Interfaces, 2011, 3, 3264-3267.	4.0	28

Mohamad K Nazeeruddin

#	Article	IF	CITATIONS
523	The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing absorption. , 2014, , .		28
524	Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19710-19717.	4.0	28
525	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	3.6	27
526	Thiocyanateâ€Free Ru(II) Sensitizers with a 4,4′â€Dicarboxyvinylâ€2,2′â€bipyridine Anchor for Dyeâ€Sensiti Solar Cells. Advanced Functional Materials, 2013, 23, 2285-2294.	zed 7.8	27
527	Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 6656-6663.	2.7	27
528	Spontaneous oxidation of water to oxygen by the mixed-valence µ-oxo ruthenium dimer L2(H2O)RuIll–O–RuIV(OH)L2(L = 2,2′-bipyridyl-5,5′-dicarboxylic acid). Journal of the Chemical Society Chemical Communications, 1988, .	2.0	26
529	Carboxy-1,4-phenylenevinylene- and carboxy-2, 6-naphthylene-vinylene unsymmetrical substituted zinc phthalocyanines for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 369-375.	0.4	26
530	Molecularâ€Scale Interface Engineering of Nanocrystalline Titania by Coâ€adsorbents for Solar Energy Conversion. ChemSusChem, 2012, 5, 181-187.	3.6	26
531	Anatase TiO2 Hollow Microspheres Fabricated by Continuous Spray Pyrolysis as a Scattering Layer in Dye-Sensitised Solar Cells. Energy Procedia, 2013, 33, 223-227.	1.8	26
532	Investigation on the Interface Modification of TiO ₂ Surfaces by Functional Coâ€Adsorbents for Highâ€Efficiency Dye‧ensitized Solar Cells. ChemPhysChem, 2017, 18, 2724-2731.	1.0	26
533	A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13751-13760.	5.2	26
534	Elucidating the Doping Mechanism in Fluorene–Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant. ACS Applied Materials & Interfaces, 2020, 12, 9395-9403.	4.0	26
535	Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Selfâ€Diffusion of Dopants. Advanced Functional Materials, 2022, 32, .	7.8	26
536	Ligand-bridged homo- and hetero-binuclear carbonyl polypyridyl complexes of ReI: syntheses, electronic spectra, redox, and luminescence behaviour. Journal of the Chemical Society Dalton Transactions, 1990, , 1657.	1.1	25
537	Exceedingly Cheap Perovskite Solar Cells Using Iron Pyrite Hole Transport Materials. ChemistrySelect, 2016, 1, 5316-5319.	0.7	25
538	Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference. ACS Energy Letters, 2017, 2, 857-861.	8.8	25
539	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309.	5.2	25
540	Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 3286-3296.	3.2	25

Mohamad K Nazeeruddin

#	Article	IF	CITATIONS
541	Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2021, 2, 100475.	2.8	25
542	Towards flexibility: metal free plastic cathodes for dye sensitized solar cells. Chemical Communications, 2012, 48, 9714.	2.2	24
543	Nanocolumnar 1-dimensional TiO ₂ photoanodes deposited by PVD-OAD for perovskite solar cell fabrication. Journal of Materials Chemistry A, 2015, 3, 13291-13298.	5.2	24
544	Strategies for Tuning Emission Energy in Phosphorescent Ir(III) Complexes. Comments on Inorganic Chemistry, 2017, 37, 117-145.	3.0	24
545	Femtosecond Chargeâ€Injection Dynamics at Hybrid Perovskite Interfaces. ChemPhysChem, 2017, 18, 2381-2389.	1.0	24
546	Synthesis and Photophysical Characterization of Cyclometalated Ruthenium Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2017, 36, 2397-2403.	1.1	24
547	Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. Nanoscale, 2018, 10, 6155-6158.	2.8	24
548	Tuning electronic structures of thiazolo[5,4-d]thiazole-based hole-transporting materials for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 334-342.	3.0	24
549	Crystal Structures of Ru Complex Sensitizers of TiO2Anatase Nanopowders. Journal of Solid State Chemistry, 1997, 132, 60-72.	1.4	23
550	Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. Chemical Science, 2012, 3, 1177.	3.7	23
551	Peripherally and Axially Carboxylic Acid Substituted Subphthalocyanines for Dye ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 2016-2021.	1.7	23
552	One-dimensional facile growth of MAPbI ₃ perovskite micro-rods. RSC Advances, 2019, 9, 11589-11594.	1.7	23
553	Green hemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Hole‧elective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
554	Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	23
555	Dual-Emitting Langmuirâ `Blodgett Film-Based Organic Light-Emitting Diodes. Langmuir, 2010, 26, 11461-11468.	1.6	22
556	Highly efficient flexible cathodes for dye sensitized solar cells to complement Pt@TCO coatings. Journal of Materials Chemistry A, 2014, 2, 3175.	5.2	22
557	Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance. Scientific Reports, 2017, 7, 150.	1.6	22
558	Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment. Crystals, 2019, 9, 562.	1.0	22

#	Article	IF	CITATIONS
559	Lead and HTM Free Stable Twoâ€Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie, 2019, 131, 1084-1088.	1.6	22
560	Hole transporting materials for perovskite solar cells and a simple approach for determining the performance limiting factors. Journal of Materials Chemistry A, 2020, 8, 1386-1393.	5.2	22
561	Phosphorescent cationic iridium(III) complexes with cyclometalating 1H-indazole and 2H-[1,2,3]-triazole ligands. Inorganica Chimica Acta, 2012, 388, 84-87.	1.2	21
562	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 406, 106-112.	1.2	21
563	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 289-296.	1.2	21
564	Engineering of Ru(<scp>ii</scp>) dyes for interfacial and light-harvesting optimization. Dalton Transactions, 2014, 43, 2726-2732.	1.6	21
565	Thiocyanateâ€Free Ruthenium(II) Sensitizers for Dyeâ€Sensitized Solar Cells Based on the Cobalt Redox Couple. ChemSusChem, 2014, 7, 2930-2938.	3.6	21
566	Ligand-free nano-grain Cu ₂ SnS ₃ as a potential cathode alternative for both cobalt and iodine redox electrolyte dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 14865-14876.	5.2	21
567	Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2016, 55, 7388-7395.	1.9	21
568	Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials. Chemistry of Materials, 2019, 31, 6605-6614.	3.2	21
569	Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability. Journal of Energy Chemistry, 2021, 59, 581-588.	7.1	21
570	An Esterâ€Substituted Iridium Complex for Efficient Vacuumâ€Processed Organic Lightâ€Emitting Diodes. ChemSusChem, 2009, 2, 305-308.	3.6	20
571	A Simple Approach to Room Temperature Phosphorescent Allenylidene Complexes. Angewandte Chemie - International Edition, 2012, 51, 8030-8033.	7.2	20
572	Unveiling the Concentration-Dependent Grain Growth of Perovskite Films from One- and Two-Step Deposition Methods: Implications for Photovoltaic Application. ACS Applied Materials & Interfaces, 2017, 9, 25063-25066.	4.0	20
573	A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 12948-12954.	2.7	20
574	Tetrasubstituted Thieno[3,2- <i>b</i>]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells. Journal of Organic Chemistry, 2020, 85, 224-233.	1.7	20
575	Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100112.	2.8	20
576	Synthesis and characterization of Ru(II) and Ru(III) complexes of diphenylphosphinoacetic acid and their interaction with small molecules. Inorganica Chimica Acta, 1988, 147, 33-43.	1.2	19

#	Article	IF	CITATIONS
577	Convenient synthesis of functionalized 4,4′-disubstituted-2,2′-bipyridine with extended π-system for dye-sensitized solar cell applications. Tetrahedron Letters, 2010, 51, 6161-6165.	0.7	19
578	Gel electrolyte materials formed from a series of novel low molecular mass organogelators for stable quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15921-15930.	5.2	19
579	Molecular Engineering of Iridium Blue Emitters Using Aryl N-Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 5089-5097.	1.0	19
580	Effect of Peripheral Substitution on the Performance of Subphthalocyanines in DSSCs. Chemistry - an Asian Journal, 2016, 11, 1223-1231.	1.7	19
581	The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine‧ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 4369-4373.	1.7	19
582	Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4962-4970.	5.2	19
583	Co-Solvent Effect in the Processing of the Perovskite:Fullerene Blend Films for Electron Transport Layer-Free Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2512-2520.	1.5	19
584	Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells. Materials Today Energy, 2018, 7, 190-198.	2.5	19
585	Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material. RSC Advances, 2018, 8, 35719-35723.	1.7	19
586	Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 2717-2724.	2.7	19
587	Tapered Crossâ€Section Photoelectron Spectroscopy of Stateâ€ofâ€theâ€Art Mixed Ion Perovskite Solar Cells: Band Bending Profile in the Dark, Photopotential Profile Under Open Circuit Illumination, and Band Diagram. Advanced Functional Materials, 2020, 30, 1910679.	7.8	19
588	Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. Journal of Materials Chemistry A, 2021, 9, 21939-21947.	5.2	19
589	Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Lowâ€Cost Holeâ€Transporting Materials. Small, 2021, 17, e2100783.	5.2	19
590	High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chemical Engineering Journal, 2022, 431, 133713.	6.6	19
591	Crystal and molecular structure of the solvate of bis(2,6-bis(1′-methylbenzimidazol-2′-yl)pyridine)cobalt(II) dihexafluorophosphate with 4-methyl-l,3-dioxolan-2-on. Inorganica Chimica Acta, 1994, 219, 11-21.	1.2	18
592	Polymer wiring of insulating electrode materials: An approach to improve energy density of lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1350-1352.	2.3	18
593	Convenient synthesis of tridentate 2,6-di(pyrazol-1-yl)-4-carboxypyridine and tetradentate 6,6′-di(pyrazol-1-yl)-4,4′-dicarboxy-2,2′-bipyridine ligands. Tetrahedron Letters, 2011, 52, 584-587.	0.7	18
594	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	1.7	18

#	Article	IF	CITATIONS
595	Thermal stability of the DSC ruthenium dye C106 in robust electrolytes. Solar Energy, 2014, 110, 96-104.	2.9	18
596	Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 °C. ACS Energy Letters, 2019, 4, 2989-2994.	8.8	18
597	Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking. Organic Electronics, 2019, 66, 7-12.	1.4	18
598	Effect of π-spacers on the photovoltaic properties of D–π–A based organic dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 194-202.	2.0	17
599	Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1415-1420.	5.2	17
600	An Unsymmetrical, Push–Pull Porphyrazine for Dye‧ensitized Solar Cells. ChemPhotoChem, 2017, 1, 164-166.	1.5	17
601	A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters. Advanced Functional Materials, 2018, 28, 1803801.	7.8	17
602	Picosecond Capture of Photoexcited Electrons Improves Photovoltaic Conversion in MAPbI ₃ :C ₇₀ â€Doped Planar and Mesoporous Solar Cells. Advanced Materials, 2018, 30, e1801496.	11.1	17
603	Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application. Dalton Transactions, 2020, 49, 5815-5822.	1.6	17
604	Expanded Phase Distribution in Low Average Layerâ€Number 2D Perovskite Films: Toward Efficient Semitransparent Solar Cells. Advanced Functional Materials, 2021, 31, 2104868.	7.8	17
605	Highly Efficient and Stable 2D Dion Jacobson/3D Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 29744-29753.	4.0	17
606	Raman characterization of charge-transfer transitions in ligand-bridged binuclear polypyridyl complexes of ruthenium(II). Journal of the Chemical Society Dalton Transactions, 1993, , 323-325.	1.1	16
607	How to blue-shift phosphorescence color of iridium(III) complexes. Inorganica Chimica Acta, 2013, 396, 17-20.	1.2	16
608	Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene based organic sensitizers for dye-sensitized sol cells. RSC Advances, 2014, 4, 54130-54133.	lar 1.7	16
609	Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26827-26833.	4.0	16
610	Photophysics of Deep Blue Acridane- and Benzonitrile-Based Emitter Employing Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2018, 122, 22796-22801.	1.5	16
611	Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2399-2404.	2.5	16
612	Design of cyclopentadithiophene-based small organic molecules as hole selective layers for perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2179-2186.	2.5	16

#	Article	IF	CITATIONS
613	A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21867-21873.	5.2	16
614	A cost-device efficiency balanced spiro based hole transport material for perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 6221-6227.	2.7	16
615	Quasi-quantum dot-induced stabilization of α-CsPbI3 perovskite for high-efficiency solar cells. Journal of Materials Chemistry A, 2020, 8, 10226-10232.	5.2	16
616	Redox properties of cobalt(II) complexes with azole-pyridines. Inorganica Chimica Acta, 2013, 407, 261-268.	1.2	15
617	Adapting Ruthenium Sensitizers to Cobalt Electrolyte Systems. Journal of Physical Chemistry Letters, 2014, 5, 501-505.	2.1	15
618	Approaches for Selective Synthesis of Ullazine Donor–Acceptor Systems. Chemistry - A European Journal, 2017, 23, 17209-17212.	1.7	15
619	Reducing Amplified Spontaneous Emission Threshold in CsPbBr3 Quantum Dot Films by Controlling TiO2 Compact Layer. Nanomaterials, 2020, 10, 1605.	1.9	15
620	Perovskite Flash Memory with a Single-Layer Nanofloating Gate. Nano Letters, 2020, 20, 5081-5089.	4.5	15
621	Azatruxeneâ€Based, Dumbbellâ€Shaped, Donorâ€″Ï€â€Bridge–Donor Holeâ€Transporting Materials for Perovsl Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047.	rite 1.7	15
622	Assessing mobile ions contributions to admittance spectra and current-voltage characteristics of 3D and 2D/3D perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110670.	3.0	15
623	Two in One: A Dinuclear Ru(II) Complex for Deep-Red Light-Emitting Electrochemical Cells and as an Electrochemiluminescence Probe for Organophosphorus Pesticides. Inorganic Chemistry, 2021, 60, 17040-17050.	1.9	15
624	Branched and bulky substituted ruthenium sensitizers for dye-sensitized solar cells. Dalton Transactions, 2014, 43, 15085-15091.	1.6	14
625	Pyridyl―and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dyeâ€ S ensitized Solar Cells. ChemPlusChem, 2017, 82, 1057-1061.	1.3	14
626	Effect of Donor Groups on the Performance of Cyclometalated Ruthenium Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2017, 56, 13437-13445.	1.9	14
627	Microscopic Analysis of Inherent Void Passivation in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1705-1710.	8.8	14
628	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overl	oçk 10 Tf	50 142 Td (a
629	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	1.8	14

630Electron Kinetics in Dye Sensitized Solar Cells Employing Anatase with (101) and (001) Facets.2.613Electrochimica Acta, 2015, 160, 296-305.13

#	Article	IF	CITATIONS
631	Spiro-bifluorene core based hole transporting material with graphene oxide modified CH3NH3PbI3 for inverted planar heterojunction solar cells. Electrochimica Acta, 2019, 319, 885-894.	2.6	13
632	Optoelectronic Properties of Layered Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900126.	3.1	13
633	Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors. Journal of Physical Chemistry C, 2020, 124, 23230-23236.	1.5	13
634	Controlling PbI ₂ Stoichiometry during Synthesis to Improve the Performance of Perovskite Photovoltaics. Chemistry of Materials, 2021, 33, 554-566.	3.2	13
635	Piezo-electric and -phototronic effects of perovskite 2D 3D heterostructures. Nano Energy, 2021, 84, 105899.	8.2	13
636	Deconvolution of Lightâ€Induced Ion Migration Phenomena by Statistical Analysis of Cathodoluminescence in Lead Halideâ€Based Perovskites. Advanced Science, 2022, 9, e2103729.	5.6	13
637	Ground- and excited-state properties of some ligand-bridged ruthenium(II) polypyridyl complexes with spectator-ligand-based emission. Journal of the Chemical Society Dalton Transactions, 1991, , 343-346.	1.1	12
638	Precision excimer laser annealed Ga-doped ZnO electron transport layers for perovskite solar cells. RSC Advances, 2018, 8, 17694-17701.	1.7	12
639	Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials. ACS Applied Energy Materials, 2019, 2, 6195-6199.	2.5	12
640	Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 2000228.	7.8	12
641	Consequence of aging at Au/HTM/perovskite interface in triple cation 3D and 2D/3D hybrid perovskite solar cells. Scientific Reports, 2021, 11, 33.	1.6	12
642	The Chemistry of the Passivation Mechanism of Perovskite Films with Ionic Liquids. Inorganic Chemistry, 2022, 61, 5010-5016.	1.9	12
643	Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. Jacs Au, 2022, 2, 136-149.	3.6	12
644	The Application of Electrospun Titania Nanofibers in Dye-sensitized Solar Cells. Chimia, 2013, 67, 149-154.	0.3	11
645	Role of the Bulky Aryloxy Group at the Nonâ€Peripheral Position of Phthalocyanines for Dye Sensitized Solar Cells. ChemPlusChem, 2017, 82, 132-135.	1.3	11
646	Micellization behavior of bile salt with pluronic (Fâ€127) and synthesis of silver nanoparticles in a mixed system. Journal of Physical Organic Chemistry, 2019, 32, e3964.	0.9	11
647	Degradation analysis in mixed (MAPbI3 and MAPbBr3) perovskite solar cells under thermal stress. Journal of Materials Science: Materials in Electronics, 2019, 30, 1354-1359.	1.1	11
648	Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640.	1.6	11

#	Article	IF	CITATIONS
649	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
650	Branched Methoxydiphenylamine-Substituted Carbazole Derivatives for Efficient Perovskite Solar Cells: Bigger Is Not Always Better. Chemistry of Materials, 2021, 33, 7017-7027.	3.2	11
651	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	3.1	11
652	DHAPM: A New Host Auto-configuration Protocol for Highly Dynamic MANETs. Journal of Network and Systems Management, 2006, 14, 441-475.	3.3	10
653	Dissociation of iridium(III) phosphorescent emitters upon adsorption on Cu(110) revealed by scanning tunneling microscopy. Applied Physics Letters, 2006, 89, 264102.	1.5	10
654	Cyclometalated Ruthenium Dyes for DSSC. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 175-181.	0.1	10
655	Charged cyclometalated iridium(III) complexes that have large electrochemical gap. Inorganica Chimica Acta, 2012, 383, 316-319.	1.2	10
656	Synthesis of Amphiphilic Ru ^{II} Heteroleptic Complexes Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> à€²]dithiophene: Relevance of the Halfâ€Sandwich Complex Intermediate and Solvent Compatibility. Chemistry - A European Journal, 2015, 21, 16252-16265.	1.7	10
657	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	1.6	10
658	Bisâ€Sulfone―and Bisâ€Sulfoxideâ€Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blueâ€Phosphorescent Lightâ€Emitting Devices. European Journal of Organic Chemistry, 2016, 2016, 2037-2047.	1.2	10
659	Impact of strength and size of donors on the optoelectronic properties of D–΀–A sensitizers. RSC Advances, 2016, 6, 37347-37361.	1.7	10
660	A novel perovskite solar cell design using aligned TiO ₂ nano-bundles grown on a sputtered Ti layer and a benzothiadiazole-based, dopant-free hole-transporting material. Nanoscale, 2017, 9, 17544-17550.	2.8	10
661	Oxazolium Iodide Modified Perovskites for Solar Cell Fabrication. ChemPlusChem, 2018, 83, 279-284.	1.3	10
662	Nanoscale Perovskite‧ensitized Solar Cell Revisited: Dyeâ€Cell or Perovskiteâ€Cell?. ChemSusChem, 2020, 13, 2571-2576.	3.6	10
663	Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives. Angewandte Chemie, 2020, 132, 5341-5345.	1.6	10
664	Principal Descriptors of Ionic Liquid Co-catalysts for the Electrochemical Reduction of CO ₂ . ACS Applied Energy Materials, 2020, 3, 4690-4698.	2.5	10
665	Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303.	2.7	10
666	Gradient 1D/3D Perovskite Bilayer using 4â€ <i>tert</i> â€Butylpyridinium Cation for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000791.	3.1	10

#	Article	IF	CITATIONS
667	Influence of Donor Groups on Benzoselenadiazole-Based Dopant-Free Hole Transporting Materials for High Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 312-321.	2.5	10
668	Molecular Ionic Junction for Enhanced Electronic Charge Transfer. Langmuir, 2009, 25, 79-83.	1.6	9
669	Phosphorescence of iridium(III) complexes with 2-(2-pyridyl)-1,3,4-oxadiazoles. Inorganica Chimica Acta, 2013, 394, 295-299.	1.2	9
670	Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. Thin Solid Films, 2014, 560, 86-93.	0.8	9
671	Effect of illumination and applied potential on the electrochemical impedance spectra in triple cation (FA/MA/Cs) 3D and 2D/3D perovskite solar cells. Journal of Electroanalytical Chemistry, 2021, 902, 115800.	1.9	9
672	Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability. Sustainable Energy and Fuels, 2022, 6, 2471-2477.	2.5	9
673	Halide exchange in the passivation of perovskite solar cells with functionalized ionic liquids. Cell Reports Physical Science, 2022, 3, 100848.	2.8	9
674	Protonation behavior in the ground and excited states of some Os(II) Polypyridyl complexes. Inorganica Chimica Acta, 1990, 171, 213-216.	1.2	8
675	Steric hindrance at metal centre quenches green phosphorescence of cationic iridium(III) complexes with 1-(2-pyridyl)-pyrazoles. Inorganica Chimica Acta, 2013, 404, 210-214.	1.2	8
676	Molecular Engineering of Functional Materials for Energy and Opto-Electronic Applications. Chimia, 2015, 69, 253.	0.3	8
677	Charge-Transporting Materials for Perovskite Solar Cells. Advances in Inorganic Chemistry, 2018, , 185-246.	0.4	8
678	Twoâ€ 5 tep Thermal Annealing: An Effective Route for 15 % Efficient Quasiâ€⊋D Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1044-1048.	1.3	8
679	Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 2100191.	3.1	8
680	High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium(II)–Silver(I) Complex. Inorganic Chemistry, 2021, 60, 11915-11922.	1.9	8
681	Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine. Journal of Physical Chemistry Letters, 2021, 12, 11323-11329.	2.1	8
682	The emergence of concentrator photovoltaics for perovskite solar cells. Applied Physics Reviews, 2021, 8, .	5.5	8
683	Ultraviolet Filtration Passivator for Stable High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 19459-19468.	4.0	8
684	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22053-22060.	4.0	8

#	Article	IF	CITATIONS
685	Structural and photophysical investigation of single-source evaporation of CsFAPbI ₃ and FAPbI ₃ perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082.	2.7	8
686	Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping. Chinese Physics B, 2019, 28, 118401.	0.7	7
687	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> â€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 2000650.	3.1	7
688	Selenopheneâ€Based Holeâ€Transporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1006-1013.	1.3	7
689	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	3.2	7
690	Evolution of hybrid organic–inorganic perovskite materials under external pressure. Applied Physics Reviews, 2021, 8, .	5.5	7
691	The Status Quo of Rashba Phenomena in Organic–Inorganic Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 361-367.	2.1	7
692	An efficient and robust name resolution protocol for dynamic MANETs. Ad Hoc Networks, 2010, 8, 842-856.	3.4	6
693	Double D–π–A Dye Linked by 2,2′â€Bipyridine Dicarboxylic Acid: Influence of <i>paraâ€</i> and <i>metaâ€</i> Substituted Carboxyl Anchoring Group. ChemPhysChem, 2015, 16, 1035-1041.	1.0	6
694	Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682.	1.6	6
695	Appraisement of Crystal Expansion in CH ₃ NH ₃ Pbl ₃ on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2366-2372.	3.6	6
696	Inkjetâ€Printed TiO ₂ /Fullerene Composite Films for Planar Perovskite Solar Cells. Helvetica Chimica Acta, 2020, 103, e2000044.	1.0	6
697	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	3.1	6
698	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie, 2021, 133, 20652-20660.	1.6	6
699	Cation optimization for <i>burn-in loss-free</i> perovskite solar devices. Journal of Materials Chemistry A, 2021, 9, 5374-5380.	5.2	6
700	Improving the Longâ€Term Stability of Doped Spiroâ€Type Holeâ€Transporting Materials in Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100650.	3.1	6
701	C ₆₀ Thin Films in Perovskite Solar Cells: Efficient or Limiting Charge Transport Layer?. ACS Applied Energy Materials, 2022, 5, 1646-1655.	2.5	6
702	Molecular Engineering of Fluoreneâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6

#	Article	IF	CITATIONS
703	Doping and energy band modulation of nanoporous electrodes for enhancing power conversion efficiency of dye-sensitized solar cells. Materials Research Bulletin, 2017, 95, 436-443.	2.7	5
704	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11388.	1.6	5
705	Beyond Tolerance Factor: Using Deep Learning for Prediction Formability of ABX3 Perovskite Structures. Advanced Theory and Simulations, 2021, 4, 2100021.	1.3	5
706	In Situ Graded Passivation via Porphyrin Derivative with Enhanced Photovoltage and Fill Factor in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
707	Molecular Engineering of Thienyl Functionalized Ullazines as Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
708	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5
709	Power from the sun: Perovskite solar cells. , 2014, , .		4
710	Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Based on Ru(II) Polypyridine Sensitizers. Energy Technology, 2016, 4, 380-384.	1.8	4
711	Perovskite Solar Cells and Devices at EPFL Valais Wallis. ChemSusChem, 2016, 9, 2519-2520.	3.6	4
712	Bisâ€Tridentateâ€Cyclometalated Ruthenium Complexes with Extended Anchoring Ligand and Their Performance in Dyeâ€Sensitized Solar Cells ChemistrySelect, 2018, 3, 1585-1592.	0.7	4
713	Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation. Journal of Materials Research, 2018, 33, 528-537.	1.2	4
714	Impact of Ï€ Spacers on the Optical, Electrochemical and Photovoltaic performance of Dâ€(Ï€â€A) 2 Based Sensitizers. ChemistrySelect, 2018, 3, 5269-5276.	0.7	4
715	Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	3.1	4
716	Enhancing Algae Biomass Production by Using Dye-Sensitized Solar Cells as Filters. ACS Sustainable Chemistry and Engineering, 2021, 9, 14353-14364.	3.2	4
717	Enhancement of Piezoelectricity in Dimensionally Engineered Metalâ€Halide Perovskites Induced by Deep Level Defects. Advanced Energy Materials, 0, , 2200181.	10.2	4
718	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€Selective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie, 2022, 134, .	1.6	4
719	Area-Scalable Zn ₂ SnO ₄ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2022, 14, 23297-23306.	4.0	4
720	Crackâ€Free Monolayer Graphene Interlayer for Improving Perovskite Crystallinity and Energy Level Alignment in Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4

#	Article	IF	CITATIONS
721	Electron donor-acceptor distance dependence of the dynamics of light-induced interfacial charge transfer in the dye-sensitization of nanocrystalline oxide semiconductors. , 2006, , .		3
722	Influence of Different Cations of N3 Dyes on Their Photovoltaic Performance and Stability. International Journal of Chemical Engineering, 2009, 2009, 1-7.	1.4	3
723	Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II) Complex-Influence on Performance of Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2011, 2011, 1-10.	0.6	3
724	Editorial: Hybrid Organic-Inorganic Photovoltaics. ChemPhysChem, 2014, 15, 987-989.	1.0	3
725	Introducing rigid π-conjugated peripheral substituents in phthalocyanines for DSSCs. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1361-1367.	0.4	3
726	Perovskite Solar Cells based on Recyclable and Biodegradable Substrates. , 2017, , .		3
727	Nonâ€Planar and Flexible Holeâ€Transporting Materials from Bisâ€Xanthene and Bisâ€Thioxanthene Units for Perovskite Solar Cells. Helvetica Chimica Acta, 2019, 102, e1900056.	1.0	3
728	Effective Preparation of Nanoscale CH ₃ NH ₃ PbI ₃ Perovskite Photosensitizers for Mesoporous TiO ₂ â€Based Solar Cells by Successive Precursor Layer Adsorption and Reaction Process. Energy Technology, 2020, 8, 1901186.	1.8	3
729	Electron-Density and Electron-Lifetime Profile in Nanocrystalline- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO mathvariant="bold">2</mml:mtext></mml:mrow></mml:msub></mml:mrow> Electrode of Dye-Sensitized Solar Cells Analysed by Voltage Decay and Charge Extraction. ISRN Nanotechnology. 2011. 2011. 1-5.</mml:math 	<td>ext₃ </td>	ext ₃
730	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	1.9	3
731	A Magnetically Controlled Wireless Intraocular Oxygen Sensor: Concept, Prototype, and In Vitro Experiments. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4189-93.	0.5	2
732	New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material. ChemSusChem, 2016, 9, 1516-1516.	3.6	2
733	Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11901-11908.	1.3	2
734	Detection of voltage pulse width effect on charge accumulation in PSCs using EFISHG measurement. Results in Physics, 2020, 17, 103063.	2.0	2
735	Influence of Lithium Ions on the Ion-coordinating Ruthenium Sensitizers for Nanocrystalline Dye-sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2011, 32, 3031-3038.	1.0	2
736	Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	4.0	2
737	Cyclopentadithiophene-functionalized Ru(II)-bipyridine sensitizers for dye-sensitized solar cells. Polyhedron, 2014, 82, 132-138.	1.0	1
738	Synthesis, spectroscopy, and electrochemistry of ionic hosts for organic electronics. Journal of Molecular Structure, 2015, 1081, 244-247.	1.8	1

#	Article	IF	CITATIONS
739	Fieldâ€Effect Transistors: Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters (Adv.) Tj ETQq1	1,0.78431 11.1	14 rgBT /O
740	Appraisement of Crystal Expansion in CH3 NH3 PbI3 on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2329-2329.	3.6	1
741	Nanoscale Lead(II) Iodide-sensitized Solar Cell. Chemistry Letters, 2019, 48, 144-147.	0.7	1
742	Two‣tep Thermal Annealing: An Effective Route for 15 % Efficient Quasiâ€2D Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1040-1041.	1.3	1
743	Depleted-Heterojunction Colloidal Quantum Dot Solar Cells Employing Low-Cost Metal Contacts. , 2010, , .		1
744	Cycloaddition of Biogas-Contained CO ₂ into Epoxides via Ionic Polymer Catalysis: An Experimental and Process Simulation Study. Industrial & Engineering Chemistry Research, 2021, 60, 17942-17948.	1.8	1
745	A cyclic voltammetric study of iron(II)/ruthenium(II) complexes with bis(tertiary phosphines). Transition Metal Chemistry, 1996, 21, 551.	0.7	0
746	Ruthenium sensitizers based on heteroaromatic conjugated bypiridines for dye-sensitized solar cells. Proceedings of SPIE, 2008, , .	0.8	0
747	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. , 2010, , 88-93.		0
748	Innentitelbild: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. 8/2012). Angewandte Chemie, 2012, 124, 1766-1766.	1.6	0
749	Inside Cover: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. Int. Ed. 8/2012). Angewandte Chemie - International Edition, 2012, 51, 1732-1732.	7.2	0
750	Tapered Cross Section Photo Electron Spectroscopy of a State of the Art Mixed Ion Perovskite Solar Cell: Band Bending Profile in the Dark and Photo-Potential Profile Under Open Circuit Illumination. , 0, , .		0
751	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. , 0, , .		0
752	Low Dimentional 2D Perovskite As An Effective Electron Blocking Layer In Efficient (18.5%) And Stable Hole-Selective Layer-Free Carbon Electrode Based Perovskite Solar Cells. , 0, , .		0
753	Electron Blocking 2D Perovskite In Highly Efficient (18.5%) Hole-Selective Layer-Free Perovskite Solar Cells Using Low-Temperature Processed Carbon Electrode. , 0, , .		0