## Pengcheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571941/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Supramolecular Nanostructures Formed by Anticancer Drug Assembly. Journal of the American<br>Chemical Society, 2013, 135, 2907-2910.                                                                                                   | 13.7 | 477       |
| 2  | Cancer ellâ€Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced Materials,<br>2016, 28, 9581-9588.                                                                                                             | 21.0 | 458       |
| 3  | Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic<br>Immunotherapy. Nano Letters, 2016, 16, 5503-5513.                                                                                          | 9.1  | 356       |
| 4  | Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy.<br>Theranostics, 2017, 7, 2575-2592.                                                                                                        | 10.0 | 219       |
| 5  | Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics, 2016, 6, 948-968.                                                                                                                              | 10.0 | 182       |
| 6  | Self-Assembled Tat Nanofibers as Effective Drug Carrier and Transporter. ACS Nano, 2013, 7, 5965-5977.                                                                                                                                 | 14.6 | 177       |
| 7  | Long Circulation Redâ€Bloodâ€Cellâ€Mimetic Nanoparticles with Peptideâ€Enhanced Tumor Penetration for<br>Simultaneously Inhibiting Growth and Lung Metastasis of Breast Cancer. Advanced Functional<br>Materials, 2016, 26, 1243-1252. | 14.9 | 177       |
| 8  | Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic<br>Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 2017,<br>7, 523-537.                      | 10.0 | 162       |
| 9  | Bioinspired Nanoparticles with NIRâ€Controlled Drug Release for Synergetic Chemophotothermal<br>Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2016, 26, 7495-7506.                                               | 14.9 | 144       |
| 10 | Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting<br>delivery: Synthesis, preparation and in vivo evaluation. Journal of Controlled Release, 2012, 159,<br>429-434.                        | 9.9  | 133       |
| 11 | Electrostatic-Driven Lamination and Untwisting of Î <sup>2</sup> -Sheet Assemblies. ACS Nano, 2016, 10, 880-888.                                                                                                                       | 14.6 | 133       |
| 12 | Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.                                                                                                                 | 38.1 | 127       |
| 13 | Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into<br>Supramolecular Nanoprobes. Journal of the American Chemical Society, 2016, 138, 3533-3540.                                                     | 13.7 | 125       |
| 14 | Supramolecular filaments containing a fixed 41% paclitaxel loading. Chemical Communications, 2013, 49, 4968.                                                                                                                           | 4.1  | 124       |
| 15 | Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019,<br>31, e1904156.                                                                                                                   | 21.0 | 120       |
| 16 | Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. Journal of Controlled Release, 2017, 267, 100-118.                                                                                          | 9.9  | 119       |
| 17 | Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144, 60-72.        | 11.4 | 111       |
| 18 | Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting<br>and Intelligent Drug Release for Anti-Metastasis Therapy. Nano Letters, 2017, 17, 5546-5554.                                       | 9.1  | 107       |

Pengcheng Zhang

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transferrin-Modified c[RGDfK]-Paclitaxel Loaded Hybrid Micelle for Sequential Blood-Brain Barrier<br>Penetration and Glioma Targeting Therapy. Molecular Pharmaceutics, 2012, 9, 1590-1598.                     | 4.6  | 103       |
| 20 | Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8, 12690-12700.                                                                                                        | 14.6 | 98        |
| 21 | Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chemical Communications, 2014, 50, 6039-6042.                                                              | 4.1  | 95        |
| 22 | Cellular Uptake and Cytotoxicity of Drug–Peptide Conjugates Regulated by Conjugation Site.<br>Bioconjugate Chemistry, 2013, 24, 604-613.                                                                        | 3.6  | 92        |
| 23 | Controlled release of free doxorubicin from peptide–drug conjugates by drug loading. Journal of<br>Controlled Release, 2014, 191, 123-130.                                                                      | 9.9  | 92        |
| 24 | Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Faraday Discussions, 2013, 166, 285.                                                                       | 3.2  | 78        |
| 25 | Design and Construction of Supramolecular Nanobeacons for Enzyme Detection. ACS Nano, 2013, 7, 4924-4932.                                                                                                       | 14.6 | 78        |
| 26 | Engineering autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor surgical bed. Science Advances, 2020, 6, eaba4024.                                                                    | 10.3 | 78        |
| 27 | T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy.<br>Nature Nanotechnology, 2021, 16, 1271-1280.                                                                  | 31.5 | 75        |
| 28 | Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIRâ€Trigged<br>Intracellular Delivery of Methylene Blue and Cisplatin. Advanced Materials, 2018, 30, e1802378.            | 21.0 | 73        |
| 29 | Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting.<br>Bioconjugate Chemistry, 2015, 26, 71-77.                                                                          | 3.6  | 72        |
| 30 | Light-Activated Core–Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic<br>Triple-Negative Breast Cancer. ACS Nano, 2018, 12, 2789-2802.                                                 | 14.6 | 64        |
| 31 | Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy. Accounts of Chemical Research, 2020, 53, 1761-1772.                                            | 15.6 | 64        |
| 32 | In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of<br>Alzheimer's disease. Biomaterials, 2007, 28, 1882-1888.                                                   | 11.4 | 58        |
| 33 | The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4518-4526. | 7.1  | 58        |
| 34 | Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against<br>Primary Cancer Cells. Theranostics, 2016, 6, 1065-1074.                                                      | 10.0 | 56        |
| 35 | Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311-321.                                 | 9.9  | 53        |
| 36 | Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews:<br>Nanomedicine and Nanobiotechnology, 2018, 10, e1479.                                                           | 6.1  | 51        |

PENGCHENG ZHANG

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery:<br>In Vitro and In Vivo Valuation. Pharmaceutical Research, 2010, 27, 2657-2669.                                           | 3.5  | 50        |
| 38 | Enhanced Cellular Entry and Efficacy of Tat Conjugates by Rational Design of the Auxiliary Segment.<br>Molecular Pharmaceutics, 2014, 11, 964-973.                                                                               | 4.6  | 50        |
| 39 | Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today, 2019, 29, 100801.                                                                                 | 11.9 | 48        |
| 40 | Ly6C <sup>hi</sup> Monocytes Delivering pHâ€5ensitive Micelle Loading Paclitaxel Improve Targeting<br>Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1701093.                                     | 14.9 | 46        |
| 41 | Bioreducible poly (β-amino esters)/shRNA complex nanoparticles for efficient RNA delivery. Journal of<br>Controlled Release, 2011, 151, 35-44.                                                                                   | 9.9  | 45        |
| 42 | π–π Stacking Mediated Chirality in Functional Supramolecular Filaments. Macromolecules, 2016, 49,<br>994-1001.                                                                                                                   | 4.8  | 41        |
| 43 | Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic<br>High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.                                                                | 9.1  | 40        |
| 44 | Walking Dead Tumor Cells for Targeted Drug Delivery Against Lung Metastasis of Tripleâ€Negative<br>Breast Cancer. Advanced Materials, 2022, 34, .                                                                                | 21.0 | 34        |
| 45 | Supramolecular Antagonists Promote Mitochondrial Dysfunction. Nano Letters, 2021, 21, 5730-5737.                                                                                                                                 | 9.1  | 30        |
| 46 | Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 353-363.                              | 12.0 | 27        |
| 47 | Activatable nanoprobes for biomolecular detection. Current Opinion in Biotechnology, 2015, 34, 171-179.                                                                                                                          | 6.6  | 26        |
| 48 | Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy.<br>Advanced Healthcare Materials, 2021, 10, e2001239.                                                                       | 7.6  | 25        |
| 49 | Nanoparticle approaches to combating drug resistance. Future Medicinal Chemistry, 2015, 7, 1503-1510.                                                                                                                            | 2.3  | 24        |
| 50 | Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic<br>hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2019, 9, 1050-1060.                                                    | 12.0 | 23        |
| 51 | Targeting Tumors with Small Molecule Peptides. Current Cancer Drug Targets, 2016, 16, 489-508.                                                                                                                                   | 1.6  | 22        |
| 52 | Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy.<br>Biomaterials Science, 2020, 8, 1045-1057.                                                                                      | 5.4  | 20        |
| 53 | High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of<br>hepatocellular carcinoma. Nano Today, 2021, 37, 101064.                                                                              | 11.9 | 20        |
| 54 | Folate-PEG modified poly(2-(2-aminoethoxy)ethoxy)phosphazene/DNA nanoparticles for gene delivery:<br>Synthesis, preparation and in vitro transfection efficiency. International Journal of Pharmaceutics,<br>2010, 392, 241-248. | 5.2  | 19        |

PENGCHENG ZHANG

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nanovaccineâ€Mediated Cell Selective Delivery of Neoantigens Potentiating Adoptive Dendritic Cell<br>Transfer for Personalized Immunization. Advanced Functional Materials, 2021, 31, 2104068.                | 14.9 | 19        |
| 56 | Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer. Nature Cancer, 2022, 3, 565-580.                                        | 13.2 | 18        |
| 57 | Design and assembly of supramolecular dual-modality nanoprobes. Nanoscale, 2015, 7, 9462-9466.                                                                                                                | 5.6  | 16        |
| 58 | Pharmacokinetics in Rats and Efficacy in Murine Ovarian Cancer Model for Solid Lipid Nanoparticles<br>Loading Docetaxel. Journal of Nanoscience and Nanotechnology, 2010, 10, 7541-7544.                      | 0.9  | 15        |
| 59 | Lenvatinib- and vadimezan-loaded synthetic high-density lipoprotein for combinational<br>immunochemotherapy of metastatic triple-negative breast cancer. Acta Pharmaceutica Sinica B, 2022,<br>12, 3726-3738. | 12.0 | 15        |
| 60 | Self-assembling mertansine prodrug improves tolerability and efficacy of chemotherapy against metastatic triple-negative breast cancer. Journal of Controlled Release, 2020, 318, 234-245.                    | 9.9  | 10        |
| 61 | Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.<br>Journal of Physical Chemistry B, 2019, 123, 10582-10593.                                                    | 2.6  | 9         |
| 62 | Chemical antagonism between photodynamic agents and chemotherapeutics: mechanism and avoidance. Chemical Communications, 2017, 53, 12438-12441.                                                               | 4.1  | 8         |
| 63 | Erythrocyte-mediated systemic immunotherapy. Nature Biomedical Engineering, 2021, 5, 385-386.                                                                                                                 | 22.5 | 1         |