Brenda G Hogue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571900/publications.pdf

Version: 2024-02-01

218592 254106 2,112 51 26 43 h-index citations g-index papers 53 53 53 2976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478, 75-85.	1.1	173
2	Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology, 1987, 157, 47-57.	1.1	164
3	A Conserved Domain in the Coronavirus Membrane Protein Tail Is Important for Virus Assembly. Journal of Virology, 2010, 84, 11418-11428.	1.5	122
4	An 81-Nucleotide Deletion in SARS-CoV-2 ORF7a Identified from Sentinel Surveillance in Arizona (January to March 2020). Journal of Virology, 2020, 94, .	1.5	121
5	Host Protein Interactions with the 3′ End of Bovine Coronavirus RNA and the Requirement of the Poly(A) Tail for Coronavirus Defective Genome Replication. Journal of Virology, 2000, 74, 5053-5065.	1.5	108
6	Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly. Journal of Virology, 2007, 81, 3597-3607.	1.5	106
7	Mouse Hepatitis Coronavirus A59 Nucleocapsid Protein Is a Type I Interferon Antagonist. Journal of Virology, 2007, 81, 2554-2563.	1.5	99
8	Importance of Conserved Cysteine Residues in the Coronavirus Envelope Protein. Journal of Virology, 2008, 82, 3000-3010.	1.5	84
9	The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated. Virology, 1992, 186, 676-683.	1.1	64
10	Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 2016, 3, 160064.	2.4	64
11	Single-particle imaging without symmetry constraints at an X-ray free-electron laser. IUCrJ, 2018, 5, 727-736.	1.0	63
12	Conformational landscape of a virus by single-particle X-ray scattering. Nature Methods, 2017, 14, 877-881.	9.0	60
13	Megahertz single-particle imaging at the European XFEL. Communications Physics, 2020, 3, .	2.0	58
14	Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst, The, 2016, 141, 1997-2008.	1.7	56
15	Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source. Scientific Data, 2017, 4, 170079.	2.4	54
16	Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 2018, 5, 574-584.	1.0	52
17	Identification of Functionally Important Negatively Charged Residues in the Carboxy End of Mouse Hepatitis Coronavirus A59 Nucleocapsid Protein. Journal of Virology, 2006, 80, 4344-4355.	1.5	47
18	Synthesis and processing of the influenza virus neuraminidase, a type II transmembrane glycoprotein. Virology, 1992, 188, 510-517.	1.1	42

#	Article	IF	Citations
19	Identification of a Bovine Coronavirus Packaging Signal. Journal of Virology, 2000, 74, 580-583.	1.5	42
20	Identification of Nucleocapsid Binding Sites within Coronavirus-Defective Genomes. Virology, 2000, 277, 235-249.	1.1	40
21	Coronavirus Structural Proteins and Virus Assembly. , 0, , 179-200.		40
22	The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology, 1988, 165, 367-376.	1.1	38
23	The Coronavirus Hemagglutinin Esterase Glycoprotein. , 1995, , 165-179.		38
24	Temporal regulation of bovine coronavirus RNA synthesis. Virus Research, 1988, 9, 343-356.	1.1	36
25	Evaluation of the performance of classification algorithms for XFEL single-particle imaging data. IUCrJ, 2019, 6, 331-340.	1.0	36
26	Suppression of lipopolysaccharide-induced inflammatory responses in RAW 264.7 murine macrophages by aqueous extract of Clinopodium vulgare L. (Lamiaceae). Journal of Ethnopharmacology, 2009, 126, 397-405.	2.0	34
27	Low-signal limit of X-ray single particle diffractive imaging. Optics Express, 2019, 27, 37816.	1.7	32
28	Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Research, 2007, 126, 139-148.	1.1	30
29	Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallographica Section D: Structural Biology, 2016, 72, 603-615.	1.1	29
30	Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles. PLoS ONE, 2016, 11, e0151842.	1.1	20
31	Importance of the Penultimate Positive Charge in Mouse Hepatitis Coronavirus A59 Membrane Protein. Journal of Virology, 2007, 81, 5339-5348.	1.5	18
32	An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser. IUCrJ, 2020, 7, 1102-1113.	1.0	15
33	Bovine Coronavirus Nucleocapsid Protein Processing and Assembly. Advances in Experimental Medicine and Biology, 1995, 380, 259-263.	0.8	12
34	Serial femtosecond X-ray diffraction of enveloped virus microcrystals. Structural Dynamics, 2015, 2, 041720.	0.9	11
35	Coronavirus Nucleocapsid Protein. Advances in Experimental Medicine and Biology, 1998, , 355-359.	0.8	10
36	Expression of the Porcine Transmissible Gastroenteritis Coronavirus M Protein. Advances in Experimental Medicine and Biology, 1990, 276, 121-126.	0.8	10

#	Article	IF	CITATIONS
37	Full inactivation of alphaviruses in single particle and crystallized forms. Journal of Virological Methods, 2016, 236, 237-244.	1.0	9
38	Subcellular Localization of SARS-CoV Structural Proteins. Advances in Experimental Medicine and Biology, 2006, 581, 297-300.	0.8	9
39	Requirement of the Poly(A) Tail in Coronavirus Genome Replication. Advances in Experimental Medicine and Biology, 2001, 494, 467-474.	0.8	7
40	Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide. PLoS ONE, 2017, 12, e0172529.	1.1	7
41	Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1. IUCrJ, 2014, 1, 305-317.	1.0	6
42	Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source. Scientific Data, 2020, 7, 404.	2.4	6
43	Coronavirus Envelope Glycoprotein Assembly Complexes. Advances in Experimental Medicine and Biology, 1998, 440, 361-365.	0.8	5
44	Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion. PLoS ONE, 2015, 10, e0136507.	1.1	4
45	Diffraction data of core-shell nanoparticles from an X-ray free electron laser. Scientific Data, 2017, 4, 170048.	2.4	4
46	Structure and Expression of the Bovine Coronavirus Hemagglutinin Protein. Advances in Experimental Medicine and Biology, 1990, 276, 95-102.	0.8	4
47	Merging single-shot XFEL diffraction data from inorganic nanoparticles: a new approach to size and orientation determination. IUCrJ, 2017, 4, 741-750.	1.0	4
48	Recombinant expression, purification, and biophysical characterization of the transmembrane and membrane proximal domains of <scp>HIV</scp> â€1 gp41. Protein Science, 2014, 23, 1607-1618.	3.1	3
49	Importance of MHV-CoV A59 Nucleocapsid Protein Cooh-Terminal Negative Charges. Advances in Experimental Medicine and Biology, 2006, 581, 127-132.	0.8	3
50	Role of Mouse Hepatitis Coronavirus Envelope Protein Transmembrane Domain. Advances in Experimental Medicine and Biology, 2006, 581, 187-191.	0.8	3
51	Mouse Hepatitis Coronavirus Nucleocapsid Phosphorylation. Advances in Experimental Medicine and Biology, 2006, 581, 157-160.	0.8	1