Michael J Callanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571874/publications.pdf

Version: 2024-02-01

29 1,467 16 27
papers citations h-index g-index

29 29 29 1564
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Correlation of organic acid tolerance and genotypic characteristics of Listeria monocytogenes food and clinical isolates. Food Microbiology, 2022, 104, 104004.	4.2	10
2	Comparison of conventional heat-treated and membrane filtered infant formulas using an <i>in vitro</i> semi-dynamic digestion method. Food and Function, 2022, 13, 8158-8167.	4.6	1
3	Genomic Insights Into Food Fermentations. , 2021, , 160-170.		O
4	Investigating the Use of Ultraviolet Light Emitting Diodes (UV-LEDs) for the Inactivation of Bacteria in Powdered Food Ingredients. Foods, 2021, 10, 797.	4.3	21
5	Thermal or membrane processing for Infant Milk Formula: Effects on protein digestion and integrity of the intestinal barrier. Food Chemistry, 2021, 347, 129019.	8.2	18
6	The Use of Membrane Filtration to Increase Native Whey Proteins in Infant Formula. Dairy, 2021, 2, 515-529.	2.0	4
7	Comparison of predicted and impedance determined growth of Listeria innocua in complex food matrices. Food Microbiology, 2020, 87, 103381.	4.2	6
8	Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Current Research in Biotechnology, 2020, 2, 1-15.	3.7	42
9	Superior esterolytic activity in environmental Lactococcus lactis strains is linked to the presence of the SGNH hydrolase family of esterases. JDS Communications, 2020, 1, 25-28.	1.5	5
10	Whey proteins: targets of oxidation, or mediators of redox protection. Free Radical Research, 2019, 53, 1136-1152.	3.3	26
11	Draft Genome Sequences of Four Lactococcus lactis Strains Isolated from Diverse Niches, Including Dairy Products, Grass, and Green Peas. Microbiology Resource Announcements, 2019, 8, .	0.6	1
12	Genome Sequencing of Microbes. , 2018, , 428-428.		0
13	Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Applied and Environmental Microbiology, 2017, 83, .	3.1	162
14	Geobacillus stearothermophilus ATCC 7953 spore chemical germination mechanisms in model systems. Food Control, 2015, 50, 141-149.	5 . 5	10
15	Complete Genome Sequence of vB_EcoM_112, a T-Even-Type Bacteriophage Specific for Escherichia coli O157:H7. Genome Announcements, 2014, 2, .	0.8	3
16	(Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods Ā¢â,¬â€œ A Review. Frontiers in Nutrition, 2014, 1, 15.	3.7	44
17	In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiology, 2014, 41, 8-18.	4.2	30
18	Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genetics, 2010, 11, 73.	2.7	41

#	Article	IF	CITATIONS
19	Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiology, 2009, 9, 50.	3.3	122
20	Exploitation of the diverse insertion sequence element content of dairy Lactobacillus helveticus starters as a rapid method to identify different strains. Journal of Microbiological Methods, 2009, 79, 32-36.	1.6	5
21	Genome Sequence of <i>Lactobacillus helveticus</i> , an Organism Distinguished by Selective Gene Loss and Insertion Sequence Element Expansion. Journal of Bacteriology, 2008, 190, 727-735.	2.2	208
22	Modification of Lactobacillus β-glucuronidase activity by random mutagenesis. Gene, 2007, 389, 122-127.	2.2	23
23	Genome analysis of the obligately lytic bacteriophage 4268 of Lactococcus lactis provides insight into its adaptable nature. Gene, 2006, 366, 189-199.	2.2	25
24	Mining the Probiotic Genome: Advanced Strategies, Enhanced Benefits, Perceived Obstacles. Current Pharmaceutical Design, 2005, 11 , 25 - 36 .	1.9	23
25	Complete genome sequence of the probiotic lactic acid bacterium <i>Lactobacillus acidophilus</i> NCFM. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3906-3912.	7.1	565
26	Essentiality of the Early Transcript in the Replication Origin of the Lactococcal Prolate Phage c2. Journal of Bacteriology, 2004, 186, 8010-8017.	2.2	3
27	Examination of lactococcal bacteriophage c2 DNA replication using two-dimensional agarose gel electrophoresis. Gene, 2001, 278, 101-106.	2.2	10
28	Regulation of the iron uptake genes inPseudomonas fluorescensM114 by pseudobactin M114: thepbrAsigma factor gene does not mediate the siderophore regulatory response. FEMS Microbiology Letters, 1996, 144, 61-66.	1.8	16
29	Iron-responsive gene expression in Pseudomonas fluorescens M114; cloning and characterization of a transcription-activating factor, PbrA. Molecular Microbiology, 1995, 15, 297-306.	2.5	43