Dennis R Grayson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decrease in Reelin and Glutamic Acid Decarboxylase67 (GAD67) Expression in Schizophrenia and Bipolar Disorder. Archives of General Psychiatry, 2000, 57, 1061.	12.3	1,122
2	Functional and Pharmacological Differences Between Recombinant <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptors. Journal of Neurophysiology, 1998, 79, 555-566.	1.8	585
3	Reelin promoter hypermethylation in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9341-9346.	7.1	515
4	Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016, 15, 485-515.	46.4	410
5	An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17095-17100.	7.1	356
6	DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 348-353.	7.1	285
7	Developmental and mature expression of full-length and truncated TrkB, receptors in the rat forebrain. , 1996, 374, 21-40.		255
8	Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13614-13619.	7.1	247
9	Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biological Psychiatry, 2005, 57, 500-509.	1.3	243
10	The Dynamics of DNA Methylation in Schizophrenia and Related Psychiatric Disorders. Neuropsychopharmacology, 2013, 38, 138-166.	5.4	241
11	A liver-specific DNA-binding protein recognizes multiple nucleotide sites in regulatory regions of transthyretin, alpha 1-antitrypsin, albumin, and simian virus 40 genes Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3840-3844.	7.1	240
12	On the epigenetic regulation of the human reelin promoter. Nucleic Acids Research, 2002, 30, 2930-2939.	14.5	237
13	GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology, 2005, 180, 191-205.	3.1	237
14	Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 2013, 68, 184-194.	4.1	232
15	Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60, 1007-1016.	4.1	192
16	Dendritic Spine Hypoplasticity and Downregulation of Reelin and GABAergic Tone in Schizophrenia Vulnerability. Neurobiology of Disease, 2001, 8, 723-742.	4.4	188
17	Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12578-12583.	7.1	188
18	Molecular Cloning and Expression of cDNA Encoding a Peripheral-type Benzodiazepine Receptor. Journal of Biological Chemistry, 1989, 264, 20415-20421.	3.4	185

#	Article	IF	CITATIONS
19	Gene Knockout of the α6 Subunit of the γ-Aminobutyric Acid Type A Receptor: Lack of Effect on Responses to Ethanol, Pentobarbital, and General Anesthetics. Molecular Pharmacology, 1997, 51, 588-596.	2.3	180
20	Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Molecular Psychiatry, 2007, 12, 385-397.	7.9	173
21	Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4676-4681.	7.1	170
22	Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: Analysis of the National Brain Databank microarray collection. Schizophrenia Research, 2008, 98, 111-117.	2.0	166
23	Is There a Future for Histone Deacetylase Inhibitors in the Pharmacotherapy of Psychiatric Disorders?. Molecular Pharmacology, 2010, 77, 126-135.	2.3	162
24	Reelin gene alleles and susceptibility to autism spectrum disorders. Molecular Psychiatry, 2002, 7, 1012-1017.	7.9	156
25	DNA Methyltransferase Inhibitors Coordinately Induce Expression of the Human Reelin and Glutamic Acid Decarboxylase 67 Genes. Molecular Pharmacology, 2007, 71, 644-653.	2.3	148
26	REELIN and Schizophrenia:: A Disease at the Interface of the Genome and the Epigenome. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 47-57.	3.4	146
27	Brain-Derived Neurotrophic Factor Epigenetic Modifications Associated with Schizophrenia-like Phenotype Induced by Prenatal Stress in Mice. Biological Psychiatry, 2015, 77, 589-596.	1.3	139
28	The human reelin gene: Transcription factors (+), repressors (â^') and the methylation switch (+/â^') in schizophrenia. , 2006, 111, 272-286.		133
29	Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Translational Psychiatry, 2014, 4, e349-e349.	4.8	132
30	The Reelin and GAD67 Promoters Are Activated by Epigenetic Drugs That Facilitate the Disruption of Local Repressor Complexes. Molecular Pharmacology, 2009, 75, 342-354.	2.3	130
31	DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1749-1754.	7.1	124
32	Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends in Pharmacological Sciences, 2009, 30, 55-60.	8.7	123
33	Site-directed mutagenesis of hepatocyte nuclear factor (HNF) binding sites in the mouse transthyretin (TTR) promoter reveal synergistic interactions with its enhancer region. Nucleic Acids Research, 1991, 19, 4139-4145.	14.5	108
34	A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5479-5484.	7.1	107
35	Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5, 730-735.	2.7	107
36	One factor recognizes the liver-specific enhancers in alpha 1-antitrypsin and transthyretin genes. Science, 1988, 239, 786-788.	12.6	104

#	Article	IF	CITATIONS
37	Maternal immune activation induces <i>GAD1</i> and <i>GAD2</i> promoter remodeling in the offspring prefrontal cortex. Epigenetics, 2015, 10, 1143-1155.	2.7	102
38	Expression patterns of gamma-aminobutyric acid type A receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9344-9348.	7.1	97
39	Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: Preliminary results from a clinical population. Schizophrenia Research, 2006, 88, 227-231.	2.0	95
40	Distinct Developmental Patterns of Expression of Rat ?1, ?5, ?2S, and ?12L?-Aminobutyric AcidAReceptor Subunit mRNAs In Vivo and In Vitro. Journal of Neurochemistry, 1992, 59, 62-72.	3.9	93
41	Developmental expression of the $\hat{l}\pm 6$ GABAA receptor subunit mRNA occurs only after cerebellar granule cell migration. Developmental Brain Research, 1993, 75, 91-103.	1.7	92
42	S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. NeuroReport, 2007, 18, 57-60.	1.2	89
43	Reviewing the Role of DNA (Cytosine-5) Methyltransferase Overexpression in the Cortical GABAergic Dysfunction Associated with Psychosis Vulnerability. Epigenetics, 2007, 2, 29-36.	2.7	86
44	DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophrenia Research, 2015, 167, 35-41.	2.0	79
45	Temporal and Spatial Patterns of Expression of c-fos, zif/268, c-jun and jun-B mRNAs in Rat Brain Following Seizures Evoked Focally from the Deep Prepiriform Cortex. Experimental Neurology, 1993, 119, 20-31.	4.1	77
46	GABA _A Receptors Mediate Trophic Effects of GABA on Embryonic Brainstem Monoamine Neurons <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 2420-2428.	3.6	76
47	Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4275-4280.	7.1	76
48	Epigenetic Downregulation of GABAergic Function in Schizophrenia: Potential for Pharmacological Intervention?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 220-229.	3.4	76
49	Epigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 89.	3.7	68
50	Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs. Translational Psychiatry, 2016, 6, e711-e711.	4.8	68
51	Histone deacetylase inhibitors decreasereelinpromoter methylationin vitro. Journal of Neurochemistry, 2005, 93, 483-492.	3.9	67
52	Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophrenia Research, 2008, 103, 330-332.	2.0	64
53	Controlled proteolysis of the multifunctional protein that initiates pyrimidine biosynthesis in mammalian cells: evidence for discrete structural domains Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 6647-6651.	7.1	63
54	DNA methylation and demethylation as targets for antipsychotic therapy. Dialogues in Clinical Neuroscience, 2014, 16, 419-429.	3.7	62

#	Article	IF	CITATIONS
55	Intrauterine cocaine exposure of rabbits: persistent elevation of GABA-immunoreactive neurons in anterior cingulate cortex but not visual cortex. Brain Research, 1995, 689, 32-46.	2.2	61
56	GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs11This paper is part of a previously published Special Issue (Volume 43/4) that accompanies the 12th Neuropharmacology Conference 2002 entitled â€~GABAA receptors in cellular and network excitability' Neuropharmacology, 2002, 43, 925-937.	4.1	60
57	GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Review of Neurotherapeutics, 2009, 9, 87-98.	2.8	60
58	Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Molecular Psychiatry, 2021, 26, 1029-1041.	7.9	57
59	Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3556-3561.	7.1	57
60	Mammalian aspartate transcarbamylase (ATCase): sequence of the ATCase domain and interdomain linker in the CAD multifunctional polypeptide and properties of the isolated domain Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4382-4386.	7.1	56
61	Depolarization induces downregulation of DNMT1 and DNMT3 in primary cortical cultures. Epigenetics, 2008, 3, 74-80.	2.7	56
62	From trans-methylation to cytosine methylation: Evolution of the methylation hypothesis of schizophrenia. Epigenetics, 2009, 4, 144-149.	2.7	56
63	Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology, 2019, 157, 107679.	4.1	56
64	Immunohistochemical study of GABAA receptor α1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Research, 1998, 799, 148-155.	2.2	55
65	Temporal and Depolarizationâ€Induced Changes in the Absolute Amounts of mRNAs Encoding Metabotropic Glutamate Receptors in Cerebellar Granule Neurons In Vitro. Journal of Neurochemistry, 1994, 63, 1207-1217.	3.9	53
66	Changes in gamma-aminobutyrate type A receptor subunit mRNAs, translation product expression, and receptor function during neuronal maturation in vitro Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10952-10956.	7.1	52
67	Effects of acute ethanol exposure on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. International Journal of Neuropsychopharmacology, 2014, 17, 2057-2067.	2.1	50
68	DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67â€positive neurons in the GAD67â€GFP mouse brain. Journal of Comparative Neurology, 2012, 520, 1951-1964.	1.6	48
69	In utero exposure to serotonergic drugs alters neonatal expression of 5â€HT _{1A} receptor transcripts: a quantitative RTâ€PCR study. International Journal of Developmental Neuroscience, 2000, 18, 171-176.	1.6	47
70	Epigenetic regulation of <i>RELN</i> and <i>GAD1</i> in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. International Journal of Developmental Neuroscience, 2017, 62, 63-72.	1.6	47
71	Toward the Identification of Peripheral Epigenetic Biomarkers of Schizophrenia. Journal of Neurogenetics, 2014, 28, 41-52.	1.4	45
72	GABAergic Cortical Neuron Chromatin as a Putative Target to Treat Schizophrenia Vulnerability. Critical Reviews in Neurobiology, 2003, 15, 121-142.	3.1	45

#	Article	IF	CITATIONS
73	Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures. Journal of Psychiatry and Neuroscience, 2009, 34, 232-7.	2.4	45
74	Expression of c-fos mRNA Following Seizures Evoked from an Epileptogenic Site in the Deep Prepiriform Cortex: Regional Distribution in Brain as Shown by in Situ Hybridization. Experimental Neurology, 1993, 119, 11-19.	4.1	42
75	Exposure of neuronal cultures to K+ depolarization or to N-methyl-d-aspartate increases the transcription of genes encoding the α1 and α 5 GABAA receptor subunits. Molecular Brain Research, 1995, 28, 338-342.	2.3	41
76	Immunohistochemical Study of GABAAReceptor β2/3 Subunits in the Hippocampal Formation of Aged Brains with Alzheimer-Related Neuropathologic Changes. Experimental Neurology, 1997, 147, 333-345.	4.1	41
77	Epigenetic Mechanisms in Autism Spectrum Disorder. International Review of Neurobiology, 2014, 115, 203-244.	2.0	41
78	NMDA-mediated modulation of gamma-aminobutyric acid type A receptor function in cerebellar granule neurons. Journal of Neuroscience, 1995, 15, 7692-7701.	3.6	39
79	Induction of the reelin promoter by retinoic acid is mediated by Sp1. Journal of Neurochemistry, 2007, 103, 650-665.	3.9	39
80	Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics, 2016, 8, 85-104.	2.1	38
81	Emerging Role of One-Carbon Metabolism and DNA Methylation Enrichment on δ-Containing GABAA Receptor Expression in the Cerebellum of Subjects with Alcohol Use Disorders (AUD). International Journal of Neuropsychopharmacology, 2017, 20, 1013-1026.	2.1	38
82	<i>N</i> â€Acetylaspartylglutamate Stimulates Metabotropic Glutamate Receptor 3 to Regulate Expression of the GABA _A α6 Subunit in Cerebellar Granule Cells. Journal of Neurochemistry, 1997, 69, 2326-2335.	3.9	37
83	Analysis of the GAD1 promoter: Trans-acting factors and DNA methylation converge on the 5′ untranslated region. Neuropharmacology, 2011, 60, 1075-1087.	4.1	36
84	GABAA receptor β2 and β3 subunits mRNA in the hippocampal formation of aged human brain with Alzheimer-related neuropathology. Molecular Brain Research, 1998, 56, 268-272.	2.3	35
85	Regional distribution in the rat central nervous system of a mRNA encoding a portion of the cardiac sodium/calcium exchanger isolated from cerebellar granule neurons. Molecular Brain Research, 1993, 20, 21-39.	2.3	34
86	CpG Methylation in Neurons: Message, Memory, or Mask?. Neuropsychopharmacology, 2010, 35, 2009-2020.	5.4	34
87	Pharmacology of Neurosteroid Biosynthesis. Role of the Mitochondrial DBI Receptor (MDR) Complex. Annals of the New York Academy of Sciences, 1994, 746, 223-242.	3.8	31
88	<scp>DNA</scp> Methylation/Demethylation Network Expression in Psychotic Patients with a History of Alcohol Abuse. Alcoholism: Clinical and Experimental Research, 2013, 37, 417-424.	2.4	31
89	Neuronal Apoptosis in an in Vitro Model of Photochemically Induced Oxidative Stress. Experimental Neurology, 1995, 133, 198-206.	4.1	30
90	Prenatal Exposure to the Pesticide Dieldrin or the GABA _A Receptor Antagonist Bicuculline Differentially Alters Expression of GABA _A Receptor Subunit mRNAs in Fetal Rat Brainstem. Developmental Neuroscience, 1998, 20, 83-92.	2.0	28

#	Article	IF	CITATIONS
91	An epigenetic basis for an omnigenic model of psychiatric disorders. Journal of Theoretical Biology, 2018, 443, 52-55.	1.7	28
92	Structure of the rat gene encoding the mitochondrial benzodiazepine receptor. Gene, 1992, 121, 377-382.	2.2	24
93	Expression of GABAA receptor $\hat{l}\pm 1$ subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Research, 2008, 1210, 29-38.	2.2	24
94	Epigenetic Targets in GABAergic Neurons to Treat Schizophrenia. Advances in Pharmacology, 2006, 54, 95-117.	2.0	23
95	Antipsychotic subtypes can be characterized by differences in their ability to modify GABAergic promoter methylation. Epigenomics, 2009, 1, 201-211.	2.1	22
96	Pharmacological characterization of regulation of phosphoinositide metabolism by recombinant 5-HT2 receptors of the rat. Neuropharmacology, 1992, 31, 1-8.	4.1	21
97	Quantitative reverse transcription-polymerase chain reaction of GABAA α1, β1 and γ2S subunits in epileptic rats following photothrombotic infarction of neocortex. Epilepsy Research, 2002, 52, 85-95.	1.6	21
98	Low doses of prenatal ethanol exposure and maternal separation alter HPA axis function and ethanol consumption in adult male rats. Neuropharmacology, 2018, 131, 271-281.	4.1	21
99	Chromatin, DNA methylation and neuron gene regulationthe purpose of the package. Journal of Psychiatry and Neuroscience, 2005, 30, 257-63.	2.4	21
100	Schizophrenia and the epigenetic hypothesis. Epigenomics, 2010, 2, 341-344.	2.1	20
101	Modeling the Molecular Epigenetic Profile of Psychosis in Prenatally Stressed Mice. Progress in Molecular Biology and Translational Science, 2014, 128, 89-101.	1.7	20
102	<i>N</i> -Phthalyl-l-Tryptophan (RG108), like Clozapine (CLO), Induces Chromatin Remodeling in Brains of Prenatally Stressed Mice. Molecular Pharmacology, 2019, 95, 62-69.	2.3	20
103	Regulation of GABAA receptor subunit mRNA expression by the pesticide dieldrin in embryonic brainstem cultures: A quantitative, competitive reverse transcription-polymerase chain reaction study. , 1997, 49, 645-653.		19
104	Alterations of GABAAβ2/3 immunoreactivity in the dentate gyrus after perforant pathway lesion. NeuroReport, 1997, 8, 3379-3383.	1.2	17
105	Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes, 2017, 8, 137.	2.4	17
106	Regulation of Hepatocyteâ€specific Gene Expression. Annals of the New York Academy of Sciences, 1989, 557, 243-256.	3.8	16
107	Transcriptomics identifies STAT3 as a key regulator of hippocampal gene expression and anhedonia during withdrawal from chronic alcohol exposure. Translational Psychiatry, 2021, 11, 298.	4.8	16
108	Chronic Dizocilpine (MK-801) Reversibly Delays GABAA Receptor Maturation in Cerebellar Granule Neurons In Vitro. Journal of Neurochemistry, 2002, 71, 693-704.	3.9	15

#	Article	IF	CITATIONS
109	Epigenetic Regulation of GABAergic Neurotransmission and Neurosteroid Biosynthesis in Alcohol Use Disorder. International Journal of Neuropsychopharmacology, 2021, 24, 130-141.	2.1	15
110	A neurochemical basis for an epigenetic vision of psychiatric disorders (1994–2009). Pharmacological Research, 2011, 64, 344-349.	7.1	14
111	Krüppel-like factor 2 regulated gene expression in mouse embryonic yolk sac erythroid cells. Blood Cells, Molecules, and Diseases, 2011, 47, 1-11.	1.4	14
112	Some implications of an epigenetic-based omnigenic model of psychiatric disorders. Journal of Theoretical Biology, 2018, 452, 81-84.	1.7	14
113	Concordance of Immune-Related Markers in Lymphocytes and Prefrontal Cortex in Schizophrenia. Schizophrenia Bulletin Open, 2021, 2, sgab002.	1.7	14
114	Neonatal lesions of the ventral hippocampal formation alter GABA-A receptor subunit mRNA expression in adult rat frontal pole. Biological Psychiatry, 2005, 57, 49-55.	1.3	13
115	Characterization of wild-type (R100R) and mutated (Q100Q) GABAA α6 subunit in Sardinian alcohol non-preferring rats (sNP). Brain Research, 2003, 967, 98-105.	2.2	11
116	Nonselective inhibition by antisense oligonucleotides of cytosine arabinoside action. NeuroReport, 1991, 2, 589-592.	1.2	9
117	Competitive RT-PCR to Quantitate Steady-State mRNA Levels. , 1999, , 127-152.		9
118	DNA Methylation in Animal Models of Psychosis. Progress in Molecular Biology and Translational Science, 2018, 157, 105-132.	1.7	9
119	Neurochemical Basis for an Epigenetic Vision of Synaptic Organization. International Review of Neurobiology, 2004, 59, 73-91.	2.0	8
120	Sequential prediction bounds for identifying differentially expressed genes in replicated microarray experiments. Journal of Statistical Planning and Inference, 2005, 129, 19-37.	0.6	8
121	Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. International Review of Neurobiology, 2021, 156, 127-183.	2.0	8
122	Gene expression of methylation cycle and related genes in lymphocytes and brain of patients with schizophrenia and non-psychotic controls. Biomarkers in Neuropsychiatry, 2021, 5, 100038.	1.0	7
123	Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Current Neuropharmacology, 2022, 20, 2354-2368.	2.9	5
124	223. Reelin and GAD67 downregulation and psychosis vulnerability. Biological Psychiatry, 2000, 47, S68.	1.3	4
125	Epigenetic Basis of Clozapine Action. , 2017, 4, .		4

Neuropsychiatric disorders and epigenetics: summary and outlook. , 2017, , 400-406.

3

#	Article	IF	CITATIONS
127	Special Issue Introduction: Role of Epigenetic Gene Regulation in Brain Function. Genes, 2017, 8, 181.	2.4	3
128	Acute and long-term inhibition of agonist-stimulated phosphoinositide hydrolysis by pulse treatment of cerebellar granule cells with TPA. Molecular and Chemical Neuropathology, 1994, 22, 67-79.	1.0	2
129	Prenatal Cocaine Exposure Does Not Affect Selected GABAA Receptor Subunit mRNA Expression in Rabbit Visual Cortexa. Annals of the New York Academy of Sciences, 1998, 846, 371-374.	3.8	2
130	Differential effects of prenatal cocaine exposure on selected subunit mRNAs of the GABAA receptor in rabbit anterior cingulate cortex. Journal of Chemical Neuroanatomy, 2002, 24, 243-255.	2.1	2
131	Introduction to neuropsychiatric disorders and epigenetics. , 2017, , 3-8.		2
132	Epigenetics: From Basic Biology to Chromatin-Modifying Drugs and New Potential Clinical Applications. Neuromethods, 2016, , 3-18.	0.3	2
133	138. Studies of molecular mechanisms regulating reelin gene expression. Biological Psychiatry, 2000, 47, S41-S42.	1.3	1
134	Robert H. Costa: 1957-2006. Hepatology, 2006, 44, 1364-1364.	7.3	1
135	GABAERGIC DYSFUNCTION IN SCHIZOPHRENIA: NEW TREATMENT STRATEGIES ON THE HORIZON. Schizophrenia Research, 2010, 117, 158.	2.0	1
136	Laboratory of molecular neurobiology (1988–1994). Pharmacological Research, 2011, 64, 339-343.	7.1	1
137	5-Methycytosine and 5-Hydroxymethylcytosine in Psychiatric Epigenetics. , 2014, , 209-240.		1
138	Laboratory Epigenetic Models of Schizophrenia. , 2014, , 163-179.		1
139	Laboratory epigenetic models of schizophrenia. , 2021, , 233-251.		1
140	Reelin Downregulation as a Prospective Treatment Target for GABAergic Dysfunction in Schizophrenia. , 2008, , 341-363.		1
141	Erminio Costa, M.D. (1924–2009). International Journal of Neuropsychopharmacology, 2010, 13, 691-692.	2.1	0
142	5-Methylcytosine and 5-hydroxymethylcytosine in psychiatric epigenetics. , 2021, , 275-308.		0
143	Epigenetic Regulation of GABAergic Targets in Psychiatry. , 2011, , 23-40.		0
144	Modification of Native GABAA Receptor Assemblies Using Antisense Oligonucleotides. Perspectives in Antisense Science, 1998, , 83-101.	0.2	0