List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 2013, 339, 826-830.	6.0	1,778
2	A Climpse of Various Pathogenetic Mechanisms of Diabetic Nephropathy. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 395-423.	9.6	575
3	The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 2017, 11, 297-311.	3.9	383
4	Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney International, 2013, 83, 568-581.	2.6	298
5	Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biology, 2018, 16, 32-46.	3.9	269
6	Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 1304-1321.	3.0	228
7	Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Current Medicinal Chemistry, 2015, 22, 2858-2870.	1.2	156
8	Blockade of the erbB2 Receptor Induces Cardiomyocyte Death through Mitochondrial and Reactive Oxygen Species-dependent Pathways. Journal of Biological Chemistry, 2009, 284, 2080-2087.	1.6	152
9	Lowâ€dose paclitaxel ameliorates fibrosis in the remnant kidney model by downâ€regulating miRâ€192. Journal of Pathology, 2011, 225, 364-377.	2.1	105
10	Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy. Diabetes, 2014, 63, 1366-1380.	0.3	105
11	p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. American Journal of Physiology - Renal Physiology, 2010, 299, F1014-F1025.	1.3	95
12	Normoalbuminuric diabetic kidney disease. Frontiers of Medicine, 2017, 11, 310-318.	1.5	85
13	A Climpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. Advances in Experimental Medicine and Biology, 2019, 1165, 49-79.	0.8	82
14	Mitochondria-Associated ER Membranes – The Origin Site of Autophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 595.	1.8	75
15	HIFâ€lα ameliorates tubular injury in diabetic nephropathy via HOâ€l–mediated control of mitochondrial dynamics. Cell Proliferation, 2020, 53, e12909.	2.4	74
16	A Glimpse of the Pathogenetic Mechanisms of Wnt/ <i>β</i> -Catenin Signaling in Diabetic Nephropathy. BioMed Research International, 2013, 2013, 1-7.	0.9	70
17	A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy. Current Medicinal Chemistry, 2014, 21, 3244-3260.	1.2	68
18	Rap1b GTPase Ameliorates Glucose-Induced Mitochondrial Dysfunction. Journal of the American Society of Nephrology: JASN, 2008, 19, 2293-2301.	3.0	67

#	Article	IF	CITATIONS
19	Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy. Current Medicinal Chemistry, 2017, 24, 3185-3202.	1.2	58
20	Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney International, 2019, 95, 880-895.	2.6	54
21	Modulation of renal-specific oxidoreductase/myo-inositol oxygenase by high-glucose ambience. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17952-17957.	3.3	53
22	Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clinical Science, 2018, 132, 2407-2422.	1.8	53
23	DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.	2.7	53
24	The Susceptibility Genes in Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2018, 4, 226-237.	1.2	51
25	Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene, 2015, 34, 6079-6091.	2.6	50
26	Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biology, 2017, 13, 482-497.	3.9	43
27	Multipleâ€microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. Journal of Cellular Physiology, 2019, 234, 16447-16462.	2.0	43
28	Involvement of the NLRC4-Inflammasome in Diabetic Nephropathy. PLoS ONE, 2016, 11, e0164135.	1.1	42
29	PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacological Research, 2020, 160, 105080.	3.1	42
30	Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death and Disease, 2021, 12, 1031.	2.7	37
31	p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Scientific Reports, 2016, 6, 29302.	1.6	36
32	Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clinical Science, 2018, 132, 1297-1314.	1.8	36
33	Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-21.	1.9	29
34	PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum–Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes, 2022, 71, 1034-1050.	0.3	29
35	Epac1-Mediated, High Glucose–Induced Renal Proximal Tubular Cells Hypertrophy via the Akt/p21 Pathway. American Journal of Pathology, 2011, 179, 1706-1718.	1.9	28
36	myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience. Journal of Biological Chemistry, 2016, 291, 5688-5707.	1.6	27

#	Article	IF	CITATIONS
37	DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clinical Science, 2020, 134, 677-694.	1.8	25
38	Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis. American Journal of Physiology - Renal Physiology, 2010, 298, F1393-F1404.	1.3	21
39	Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome. Current Medicinal Chemistry, 2021, 28, 1347-1362.	1.2	21
40	The Loss of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 706832.	1.8	20
41	Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIFâ€1α. FASEB Journal, 2020, 34, 12599-12614.	0.2	19
42	Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clinical Science, 2021, 135, 1273-1288.	1.8	19
43	DsbA-L Ameliorates Renal Injury Through the AMPK/NLRP3 Inflammasome Signaling Pathway in Diabetic Nephropathy. Frontiers in Physiology, 2021, 12, 659751.	1.3	15
44	Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: A single-center study in China. Journal of Diabetes and Its Complications, 2016, 30, 537-541.	1.2	14
45	MAMs Protect Against Ectopic Fat Deposition and Lipid-Related Kidney Damage in DN Patients. Frontiers in Endocrinology, 2021, 12, 609580.	1.5	14
46	Tacrolimus ameliorates tubulointerstitial inflammation in diabetic nephropathy via inhibiting the NFATc1/TRPC6 pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 9810-9824.	1.6	13
47	Mitophagy: A Novel Therapeutic Target for Treating DN. Current Medicinal Chemistry, 2021, 28, 2717-2728.	1.2	12
48	Design and validation of a scoring model for differential diagnosis of diabetic nephropathy and nondiabetic renal diseases in type 2 diabetic patients. Journal of Diabetes, 2020, 12, 237-246.	0.8	10
49	The CXCL1-CXCR2 Axis Mediates Tubular Injury in Diabetic Nephropathy Through the Regulation of the Inflammatory Response. Frontiers in Physiology, 2021, 12, 782677.	1.3	10
50	The single nucleotide polymorphism rs11643718 in <i>SLC12A3</i> is associated with the development of diabetic kidney disease in Chinese people with type 2 diabetes. Diabetic Medicine, 2020, 37, 1879-1889.	1.2	8
51	The Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker for Diabetic Nephropathy. Kidney and Blood Pressure Research, 2018, 43, 1772-1785.	0.9	7
52	AdipoRon Protects against Tubular Injury in Diabetic Nephropathy by Inhibiting Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	6
53	Metabolomics window into the role of acute kidney injury after coronary artery bypass grafting in diabetic nephropathy progression. PeerJ, 2020, 8, e9111.	0.9	4
54	Mitochondrial DNA-dependent inflammation in kidney diseases. International Immunopharmacology, 2022, 107, 108637.	1.7	2