Kyle M Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone H2A variants: Diversifying chromatin to ensure genome integrity. Seminars in Cell and Developmental Biology, 2023, 135, 59-72.	2.3	23
2	ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Research, 2022, 50, 3922-3943.	6.5	16
3	Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). BioEssays, 2022, 44, e2200015.	1.2	0
4	Emerging roles of RNA modifications in genome integrity. Briefings in Functional Genomics, 2021, 20, 106-112.	1.3	6
5	Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. Journal of Cell Biology, 2021, 220, .	2.3	17
6	DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nature Communications, 2021, 12, 2490.	5.8	63
7	Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Frontiers in Genetics, 2021, 12, 747734.	1.1	9
8	Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Experimental and Molecular Medicine, 2021, 53, 1268-1277.	3.2	8
9	FKBP25 participates in DNA double-strand break repair. Biochemistry and Cell Biology, 2020, 98, 42-49.	0.9	7
10	Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18439-18447.	3.3	62
11	PCAF-Mediated Histone Acetylation Promotes Replication Fork Degradation by MRE11 and EXO1 in BRCA-Deficient Cells. Molecular Cell, 2020, 80, 327-344.e8.	4.5	35
12	Making it or breaking it: DNA methylation and genome integrity. Essays in Biochemistry, 2020, 64, 687-703.	2.1	21
13	Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates?. DNA Repair, 2019, 81, 102661.	1.3	73
14	Preserving genome integrity and function: the DNA damage response and histone modifications. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 208-241.	2.3	63
15	In Time and Space: Laser Microirradiation and the DNA Damage Response. Methods in Molecular Biology, 2019, 1999, 61-74.	0.4	7
16	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	1.4	47
17	Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes and Development, 2019, 33, 1751-1774.	2.7	89
18	Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage. Cell, 2019, 176, 127-143.e24.	13.5	69

KyleÂM Miller

#	Article	IF	CITATIONS
19	Histone methylation and the DNA damage response. Mutation Research - Reviews in Mutation Research, 2019, 780, 37-47.	2.4	132
20	Caught with One's Zinc Fingers in the Genome Integrity Cookie Jar. Trends in Genetics, 2018, 34, 313-325.	2.9	51
21	Double duty: ZMYND8 in the DNA damage response and cancer. Cell Cycle, 2018, 17, 414-420.	1.3	26
22	Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. ELife, 2018, 7, .	2.8	55
23	Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Communications Biology, 2018, 1, 178.	2.0	101
24	KDM5A Regulates a Translational Program that Controls p53 Protein Expression. IScience, 2018, 9, 84-100.	1.9	25
25	Fluorescent fusions of the N protein of phage Mu label DNA damage in living cells. DNA Repair, 2018, 72, 86-92.	1.3	5
26	CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A. Methods in Molecular Biology, 2018, 1832, 255-269.	0.4	6
27	ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes and Development, 2017, 31, 260-274.	2.7	65
28	Chromatin Regulates Genome Targeting with Cisplatin. Angewandte Chemie, 2017, 129, 6583-6587.	1.6	3
29	Chromatin Regulates Genome Targeting with Cisplatin. Angewandte Chemie - International Edition, 2017, 56, 6483-6487.	7.2	25
30	Histone demethylase KDM5A regulates the ZMYND8–NuRD chromatin remodeler to promote DNA repair. Journal of Cell Biology, 2017, 216, 1959-1974.	2.3	132
31	Bromodomain proteins: repairing DNA damage within chromatin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160286.	1.8	35
32	The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Biochemistry and Cell Biology, 2016, 94, 381-395.	0.9	24
33	Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1170-9.	3.3	81
34	Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genetics, 2016, 12, e1006272.	1.5	91
35	Ubiquitinâ€Activated Interaction Traps (<scp>UBAIT</scp> s) identify E3 ligase binding partners. EMBO Reports, 2015, 16, 1699-1712.	2.0	72
36	ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. ELife, 2015, 4, .	2.8	54

KyleÂM Miller

#	Article	IF	CITATIONS
37	Mammalian polymerase Î, promotes alternative NHEJ and suppresses recombination. Nature, 2015, 518, 254-257.	13.7	571
38	Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes and Development, 2015, 29, 197-211.	2.7	204
39	Nucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling. PLoS Genetics, 2014, 10, e1004178.	1.5	83
40	Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural and Molecular Biology, 2014, 21, 366-374.	3.6	536
41	Unravelling the genomic targets of small molecules using high-throughput sequencing. Nature Reviews Genetics, 2014, 15, 783-796.	7.7	80
42	Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 750, 23-30.	0.4	148
43	Systematic Identification of Functional Residues in Mammalian Histone H2AX. Molecular and Cellular Biology, 2013, 33, 111-126.	1.1	54
44	Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. ELife, 2013, 2, e01222.	2.8	105
45	Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature Chemical Biology, 2012, 8, 301-310.	3.9	576
46	Histone marks: repairing DNA breaks within the context of chromatin. Biochemical Society Transactions, 2012, 40, 370-376.	1.6	74
47	G-quadruplexes: selective DNA targeting for cancer therapeutics?. Expert Review of Clinical Pharmacology, 2011, 4, 139-142.	1.3	35
48	Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 2010, 17, 1144-1151.	3.6	542
49	HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature, 2010, 467, 223-227.	13.7	87
50	Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO Journal, 2009, 28, 1878-1889.	3.5	288
51	A non-canonical function of topoisomerase II in disentangling dysfunctional telomeres. EMBO Journal, 2009, 28, 2803-2811.	3.5	37
52	Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 2009, 462, 935-939.	13.7	461
53	Sumoylation of RecQ Helicase Controls the Fate of Dysfunctional Telomeres. Molecular Cell, 2009, 33, 559-569.	4.5	56
54	Regulation of Histone H3 Lysine 56 Acetylation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2007, 282, 15040-15047.	1.6	70

KyleÂM Miller

#	Article	IF	CITATIONS
55	Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007, 446, 806-810.	13.7	806
56	Semi-conservative DNA replication through telomeres requires Taz1. Nature, 2006, 440, 824-828.	13.7	235
57	Cell Cycle and Checkpoint Regulation of Histone H3 K56 Acetylation by Hst3 and Hst4. Molecular Cell, 2006, 23, 109-119.	4.5	235
58	Taking It Off: Regulation of H3 K56 Acetylation by Hst3 and Hst4. Cell Cycle, 2006, 5, 2561-2565.	1.3	29
59	Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO Journal, 2005, 24, 3128-3135.	3.5	111
60	Indecent Exposure. Molecular Cell, 2004, 13, 7-18.	4.5	134
61	Telomere Maintenance in Fission Yeast Requires an Est1 Ortholog. Current Biology, 2003, 13, 575-580.	1.8	71
62	The Telomere Protein Taz1 Is Required to Prevent and Repair Genomic DNA Breaks. Molecular Cell, 2003, 11, 303-313.	4.5	79
63	Suppression of Apoptosis Induced by Growth Factor Withdrawal by an Oncogenic Form of c-Cbl. Journal of Biological Chemistry, 2001, 276, 9028-9037.	1.6	19