Yong Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570934/publications.pdf Version: 2024-02-01

YONG PENG

#	Article	IF	CITATIONS
1	"Coffee ring―controlment in spray prepared >19% efficiency Cs0.19FA0.81Pbl2.5Br0.5 perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 201-208.	7.1	14
2	A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell. Journal of Alloys and Compounds, 2022, 902, 163725.	2.8	11
3	All-vacuum deposited perovskite solar cells with glycine modified NiO _{<i>x</i>} hole-transport layers. RSC Advances, 2022, 12, 10863-10869.	1.7	7
4	Study of a Novel Electrochromic Device with Crystalline WO3 and Gel Electrolyte. Polymers, 2022, 14, 1430.	2.0	4
5	Accelerated Crystal Growth in >16% Printed MA _{<i>x</i>} FA _{<i>y</i>} Cs _{<i>z</i>} PbI ₃ Perovskite Solar Cells from Aqueous Inks. ACS Sustainable Chemistry and Engineering, 2022, 10, 5225-5232.	3.2	1
6	Ultrafast Growth of High-Quality Cs _{0.14} FA _{0.86} Pb(Br _{<i>x</i>} I _{1–<i>x</i>}) ₃ Thin Films Achieved Using Super-Close-Space Sublimation. ACS Applied Energy Materials, 2022, 5, 5797-5803.	2.5	9
7	Defect Passivation and Fermi Level Modification for >10% Evaporated All-Inorganic CsPbBr ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8049-8056.	2.5	10
8	Improved efficiency and carrier dynamic transportation behavior in perovskite solar cells with CuInS ₂ quantum dots as hole-transport materials. Dalton Transactions, 2021, 50, 8837-8844.	1.6	6
9	Bandgap adjustment assisted preparation of >18% Cs _y FA _{1â^'y} Pbl _x Br _{3â^'x} -based perovskite solar cells using a hybrid spraying process. RSC Advances, 2021, 11, 17595-17602.	1.7	4
10	A Self-Healing Ionic Liquid-Based Ionically Cross-Linked Gel Polymer Electrolyte for Electrochromic Devices. Polymers, 2021, 13, 742.	2.0	8
11	19.59% Efficiency from Rb0.04-Cs0.14FA0.86Pb(Br I1â^')3 perovskite solar cells made by vapor–solid reaction technique. Science Bulletin, 2021, 66, 962-964.	4.3	19
12	Lead contamination analysis of perovskite modules under simulated working conditions. Solar Energy, 2021, 226, 85-91.	2.9	16
13	Printable materials for printed perovskite solar cells. Flexible and Printed Electronics, 2020, 5, 014002.	1.5	2
14	Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 206, 110317.	3.0	41
15	Aqueous Sn-S Complex Derived Electron Selective Layer for Perovskite Solar Cells. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 272-279.	0.4	1
16	Improving the crystal growth of a Cs0.24FA0.76PbI3â^'xBrx perovskite in a vapor–solid reaction process using strontium iodide. Sustainable Energy and Fuels, 2020, 4, 2491-2496.	2.5	12
17	Interface modification effect on the performance of CsxFA1â^'xPbIyBr3â^'y perovskite solar cells fabricated by evaporation/spray-coating method. Journal of Chemical Physics, 2020, 153, 014706.	1.2	13
18	A pressure-assisted annealing method for high quality CsPbBr ₃ film deposited by sequential thermal evaporation. RSC Advances, 2020, 10, 8905-8909.	1.7	20

Yong Peng

#	Article	IF	CITATIONS
19	Room-temperature Sputtered NiOx for hysteresis-free and stable inverted Cs-FA mixed-cation perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 115, 105129.	1.9	9
20	Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Solar Energy, 2019, 188, 312-317.	2.9	23
21	Enhancing the thermal stability of the carbon-based perovskite solar cells by using a CsxFA1â^'xPbBrxI3â^'x light absorber. RSC Advances, 2019, 9, 11877-11881.	1.7	13
22	A novel ionically crosslinked gel polymer electrolyte as an ion transport layer for high-performance electrochromic devices. Journal of Materials Chemistry C, 2019, 7, 3744-3750.	2.7	24
23	Room-temperature synthesized SnO ₂ electron transport layers for efficient perovskite solar cells. RSC Advances, 2019, 9, 9946-9950.	1.7	21
24	Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Materials Science in Semiconductor Processing, 2019, 98, 39-43.	1.9	42
25	A perovskite/silicon hybrid system with a solar-to-electric power conversion efficiency of 25.5%. Journal of Materials Chemistry A, 2019, 7, 26479-26489.	5.2	23
26	Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6319-6326.	5.2	28
27	Efficient and Stable Inverted Planar Perovskite Solar Cells Using a Triphenylamine Holeâ€Transporting Material. ChemSusChem, 2018, 11, 1467-1473.	3.6	45
28	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	4.0	81
29	An efficient, flexible perovskite solar module exceeding 8% prepared with an ultrafast PbI2 deposition rate. Scientific Reports, 2018, 8, 442.	1.6	35
30	Alleviate the J–V hysteresis of carbon-based perovskite solar cells via introducing additional methylammonium chloride into MAPbI3 precursor. RSC Advances, 2018, 8, 35157-35161.	1.7	19
31	Large-area perovskite solar cells with Cs _x FA _{1â^'x} PbI _{3â^'y} Br _y thin films deposited by a vapor–solid reaction method. Journal of Materials Chemistry A, 2018, 6, 21143-21148.	5.2	73
32	Recovering MAPbI ₃ -Based Perovskite Films From Water-Caused Permanent Degradations by Dipping in MAI Solution. IEEE Journal of Photovoltaics, 2018, 8, 1692-1700.	1.5	2
33	Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9, 4609.	5.8	596
34	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of â^¼14%. ACS Applied Energy Materials, 2018, 1, 3565-3570.	2.5	13
35	Enhanced Crystallinity of Lowâ€Temperature Solutionâ€Processed SnO ₂ for Highly Reproducible Planar Perovskite Solar Cells. ChemSusChem, 2018, 11, 2898-2903.	3.6	31
36	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	11.1	104

Yong Peng

#	Article	IF	CITATIONS
37	Nonâ€Conjugated Polymer as an Efficient Dopantâ€Free Holeâ€Transporting Material for Perovskite Solar Cells. ChemSusChem, 2017, 10, 2578-2584.	3.6	64
38	Perovskite Solar Cells: Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells (Adv. Mater. 20/2017). Advanced Materials, 2017, 29, .	11.1	3
39	Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. Journal of Materials Chemistry A, 2017, 5, 8352-8359.	5.2	35
40	A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2509-2515.	15.6	437
41	Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. RSC Advances, 2017, 7, 48958-48961.	1.7	12
42	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.	10.2	240
43	Fabrication of Flexible Dye‧ensitized Solar Cell Modules using Commercially Available Materials. Energy Technology, 2016, 4, 536-542.	1.8	11