
David X Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prolonged endothelial-dysfunction in human arterioles following infection with SARS-CoV-2. Cardiovascular Research, 2022, 118, 18-19.	1.8	9
2	NADPH oxidase 4 contributes to TRPV4-mediated endothelium-dependent vasodilation in human arterioles by regulating protein phosphorylation of TRPV4 channels. Basic Research in Cardiology, 2022, 117, 24.	2.5	4
3	The Role of Angiotensin 1â€7 in Isolated Human Arterioles with SARSâ€CoVâ€2. FASEB Journal, 2022, 36, .	0.2	0
4	Inhibiting NADPH Oxidases to Target Vascular and Other Pathologies: An Update on Recent Experimental and Clinical Studies. Biomolecules, 2022, 12, 823.	1.8	12
5	Endothelinâ€1 potentiates TRPV1â€mediated vasoconstriction of human adipose arterioles in a protein kinase Câ€dependent manner. British Journal of Pharmacology, 2021, 178, 709-725.	2.7	4
6	Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 638-650.	1.1	24
7	Prolonged Endothelial Dysfunction in Human Arterioles with SARSâ€CoVâ€2. FASEB Journal, 2021, 35, .	0.2	0
8	Generation and proliferation assessment of HEK293T cells stably expressing Kv1.5 channel with and without regulatory subunits \hat{I}^2 1.1 or \hat{I}^2 1.2. FASEB Journal, 2021, 35, .	0.2	0
9	Distinct Signaling Functions of Rap1 Isoforms in NO Release From Endothelium. Frontiers in Cell and Developmental Biology, 2021, 9, 687598.	1.8	1
10	NADPH Oxidase 2 and 4 Contribute to Endotheliumâ€Đependent Dilation in Healthy Human Arterioles. FASEB Journal, 2020, 34, 1-1.	0.2	0
11	Myocardin and Kv1 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2454-2456.	1.1	2
12	<scp>TRPV</scp> 4 regulates matrix stiffness and <scp>TGF</scp> β1â€induced epithelialâ€mesenchymal transition. Journal of Cellular and Molecular Medicine, 2019, 23, 761-774.	1.6	72
13	Endothelin receptor A and p66Shc regulate spontaneous Ca ²⁺ oscillations in smooth muscle cells controlling renal arterial spontaneous motion. FASEB Journal, 2019, 33, 2636-2645.	0.2	6
14	Mechanisms of TRPV4 channel activation in human arteriolar endothelial cells: A structureâ€activity study with arachidonic acid and analogs. FASEB Journal, 2019, 33, 684.9.	0.2	0
15	Shakerâ€related voltageâ€gated K ⁺ channel expression and vasomotor function in human coronary resistance arteries. Microcirculation, 2018, 25, e12431.	1.0	7
16	Opposing vasomotor roles of TRPV1 and TRPV2 channels in the Human Adipose Microcirculation. FASEB Journal, 2018, 32, .	0.2	0
17	H 2 O 2 Regulates Arachidonic Acidâ€induced TRPV4â€mediated Vasodilation in Human Coronary Arterioles. FASEB Journal, 2018, 32, 846.10.	0.2	0
18	TRPV4 ION Channel Is Associated withÂScleroderma. Journal of Investigative Dermatology, 2017, 137, 962-965	0.3	21

DAVID X ZHANG

#	Article	IF	CITATIONS
19	TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. American Journal of Physiology - Cell Physiology, 2017, 312, C562-C572.	2.1	52
20	Contribution of K _V 1.5 Channel to Hydrogen Peroxide–Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease. Circulation Research, 2017, 120, 658-669.	2.0	43
21	Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH) rat cerebral arterial muscle cells. PLoS ONE, 2017, 12, e0176796.	1.1	7
22	A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget, 2016, 7, 37622-37635.	0.8	63
23	Expression of CYP 4A ω-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins and Other Lipid Mediators, 2016, 124, 16-26.	1.0	24
24	Chronic Co-Administration of Sepiapterin and <scp>l</scp> -Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice. Circulation: Heart Failure, 2016, 9, e002424.	1.6	48
25	Rap1 promotes endothelial mechanosensing complex formation, <scp>NO</scp> release and normal endothelial function. EMBO Reports, 2015, 16, 628-637.	2.0	42
26	H 2 O 2 â€Induced Dilation in Human Adipose Arterioles: Role of Smooth Muscle K + Channels. FASEB Journal, 2015, 29, 637.4.	0.2	2
27	Characterization of blood pressure and endothelial function in TRPV4-deficient mice with <scp>l</scp> -NAME- and angiotensin II-induced hypertension. Physiological Reports, 2014, 2, e00199.	0.7	35
28	Rap1b in Smooth Muscle and Endothelium Is Required for Maintenance of Vascular Tone and Normal Blood Pressure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1486-1494.	1.1	43
29	Potential role of TRPV4 channels in angiotensin IIâ€induced endothelial dysfunction (696.2). FASEB Journal, 2014, 28, 696.2.	0.2	0
30	Role of hydrogen peroxide and epoxyeicosatrienoic acids in arachidonic acidâ€induced dilation of human coronary arterioles. FASEB Journal, 2013, 27, 687.12.	0.2	0
31	Angiotensin Ilâ€induced impairment of vasodilation in mouse mesenteric arteries: role of endothelial TRPV4 channels. FASEB Journal, 2013, 27, 916.4.	0.2	0
32	Hydrogen peroxide modulates TRPV4â€mediated Ca2+ entry in human coronary artery endothelial cells. FASEB Journal, 2013, 27, 916.3.	0.2	1
33	Brain astrocyteâ€derived EETs and 20â€EHTE elicit opposing actions on calcium movement and KCa channel current activities in astrocytes. FASEB Journal, 2013, 27, 1203.17.	0.2	0
34	H ₂ O ₂ -Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Activation. Circulation Research, 2012, 110, 471-480.	2.0	143
35	NADPH oxidaseâ€dependent reactive oxygen species are involved in flowâ€induced dilation of human adipose arterioles. FASEB Journal, 2012, 26, 863.3.	0.2	0
36	Blood pressure profile and response to NG â€nitroâ€Lâ€arginine methyl ester challenge in conscious TRPV4â€deficient mice. FASEB Journal, 2012, 26, 1056.9.	0.2	0

DAVID X ZHANG

#	Article	IF	CITATIONS
37	Differential regulation of oxidant generation and [Ca2+]i mobilization by adenosine A1 and A3 receptors in brain astrocytes. FASEB Journal, 2012, 26, 1137.7.	0.2	Ο
38	Arachidonic acidâ€induced dilation in human coronary arterioles: role of endothelial TRPV4â€mediated and membrane potentialâ€sensitive Ca2+ entry. FASEB Journal, 2012, 26, .	0.2	0
39	Transient Receptor Potential Channel Activation and Endothelium-dependent Dilation in the Systemic Circulation. Journal of Cardiovascular Pharmacology, 2011, 57, 133-139.	0.8	71
40	Transient Receptor Potential Vanilloid Type 4–Deficient Mice Exhibit Impaired Endothelium-Dependent Relaxation Induced by Acetylcholine In Vitro and In Vivo. Hypertension, 2009, 53, 532-538.	1.3	170
41	Unmasking a role for nitric oxide in acetylcholineâ€induced vasodilation in diseased human coronary arterioles FASEB Journal, 2009, 23, .	0.2	Ο
42	Role of TRPV4 channels in agonistâ€induced endothelial Ca2+ entry and vasodilation: Evidence from TRPV4â€deficient mice. FASEB Journal, 2008, 22, 1181.4.	0.2	0
43	TRPV4 channel mediates flowâ€induced dilation in mouse small mesenteric arteries. FASEB Journal, 2008, 22, 964.9.	0.2	Ο
44	Steroid-Producing Cells Regulate Arterial Tone of Adrenal Cortical Arteries. Endocrinology, 2007, 148, 3569-3576.	1.4	15
45	Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2023-H2031.	1.5	353
46	ACh-induced relaxations of rabbit small mesenteric arteries: role of arachidonic acid metabolites and K+. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H152-H159.	1.5	26
47	Cyclooxygenase- and lipoxygenase-dependent relaxation to arachidonic acid in rabbit small mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H302-H309.	1.5	24
48	Mechanisms of histamine-induced relaxation in bovine small adrenal cortical arteries. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1058-E1063.	1.8	8
49	Characterization of Vasoconstrictor Responses in Small Bovine Adrenal Cortical Arteries in Vitro. Endocrinology, 2004, 145, 1571-1578.	1.4	15
50	Acetylcholine-Induced Relaxation and Hyperpolarization in Small Bovine Adrenal Cortical Arteries: Role of Cytochrome P450 Metabolites. Endocrinology, 2004, 145, 4532-4539.	1.4	11
51	Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H605-H612.	1.5	101
52	Calcium-Induced Calcium Release and Cyclic ADP-Ribose-Mediated Signaling in the Myocytes from Small Coronary Arteries. Microvascular Research, 2002, 64, 339-348.	1.1	11
53	Role of ceramide in TNF-α-induced impairment of endothelium-dependent vasorelaxation in coronary arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1785-H1794.	1.5	67
54	Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Research in Cardiology, 2001, 96, 267-274.	2.5	81

DAVID X ZHANG

#	Article	IF	CITATIONS
55	Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium Channels. Circulation Research, 2001, 89, 1177-1183.	2.0	185
56	Ceramide Reduces Endothelium-Dependent Vasodilation by Increasing Superoxide Production in Small Bovine Coronary Arteries. Circulation Research, 2001, 88, 824-831.	2.0	75
57	Effect of Ceramide on K Ca Channel Activity and Vascular Tone in Coronary Arteries. Hypertension, 1999, 33, 1441-1446.	1.3	47