Honglong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570704/publications.pdf

Version: 2024-02-01

		1478505	1474206	
10	192	6	9	
papers	citations	h-index	g-index	
13	13	13	255	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Two major metabolic factors for an efficient NADP-malic enzymeÂtype C4 photosynthesis. Plant Physiology, 2022, 189, 84-98.	4.8	15
2	Diurnal and Seasonal Variations of Photosynthetic Energy Conversion Efficiency of Field Grown Wheat. Frontiers in Plant Science, 2022, 13, 817654.	3.6	3
3	Early Career Researcher Profile: Honglong Zhao. In Silico Plants, 2021, 3, .	1.9	O
4	Why an increase in activity of an enzyme in the Calvinâ \in Benson cycle does not always lead to an increased photosynthetic CO2 uptake rate? at theoretical analysis. In Silico Plants, 2021, 3, .	1.9	10
5	An in situ approach to characterizing photosynthetic gas exchange of rice panicle. Plant Methods, 2020, 16, 92.	4.3	27
6	Morphological and physiological factors contributing to early vigor in the elite rice cultivar 9,311. Scientific Reports, 2020, 10, 14813.	3.3	12
7	A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. Journal of Experimental Botany, 2019, 70, 2479-2490.	4.8	36
8	Kinetic Modeling of Photorespiration. Methods in Molecular Biology, 2017, 1653, 203-216.	0.9	2
9	ePlant for quantitative and predictive plant science research in the big data era â€"Lay the foundation for the future model guided crop breeding, engineering and agronomy. Quantitative Biology, 2017, 5, 260-271.	0.5	18
10	Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice. Functional Plant Biology, 2016, 43, 727.	2.1	68