
José Luis Olvera-Cervantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wireless Sensing of Complex Dielectric Permittivity of Liquids Based on the RFID. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2160-2167.	4.6	70
2	Permittivity Measurements at Microwave Frequencies Using Epsilon-Near-Zero (ENZ) Tunnel Structure. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1863-1868.	4.6	60
3	Dielectric properties of guava, mamey sapote, prickly pears, and <i>Nopal</i> in the microwave range. International Journal of Food Properties, 2017, 20, 2944-2953.	3.0	28
4	The Perfect Balance-A Design Procedure for Balanced Bandpass Filters [Application Notes]. IEEE Microwave Magazine, 2015, 16, 54-65.	0.8	19
5	Sensor and Methodology for Determining Dielectric Constant Using Electrically Coupled Resonators. IEEE Microwave and Wireless Components Letters, 2019, 29, 626-628.	3.2	18
6	Dielectric properties of tequila in the microwave frequency range (0.5–20ÂGHz) using coaxial probe. International Journal of Food Properties, 2017, 20, S377-S384.	3.0	17
7	Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques. Scientific Reports, 2022, 12, 2205.	3.3	13
8	Dielectric Properties of Beverages (Tamarind and Green) Relevant to Microwaveâ€Assisted Pasteurization. Journal of Food Science, 2018, 83, 2317-2323.	3.1	12
9	Dielectric Anisotropy Sensor Using Coupled Resonators. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1610-1616.	4.6	11
10	Dielectric Characterization of Anisotropic 3D-Printed Biodegradable Substrates Based on Polylactic Acid [Application Notes]. IEEE Microwave Magazine, 2021, 22, 18-100.	0.8	9
11	Multifrequency Coupled-Resonator Sensor for Dielectric Characterization of Liquids. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	4.7	9
12	Dielectric properties of Mexican sauces for microwaveâ€assisted pasteurization process. Journal of Food Science, 2021, 86, 112-119.	3.1	7
13	Novel microstrip diplexer for ultra-wide-band (UWB) and wireless LAN (WLAN) bands. Journal of Electromagnetic Waves and Applications, 2013, 27, 1338-1350.	1.6	5
14	A novel via-free microstrip balanced-to-balanced diplexer for narrow-band applications. Microwave and Optical Technology Letters, 2015, 57, 567-570.	1.4	5
15	Dielectric characterization of vegetable oils during a heating cycle. Journal of Food Science and Technology, 2021, 58, 1480-1487.	2.8	4
16	Dielectric properties of fresh rabbit meat in the microwave range. Journal of Food Science, 2021, 86, 952-959.	3.1	3
17	New methodology to determine the loss tangent of dielectric planar samples by using electrically coupled resonators. Journal of Electromagnetic Waves and Applications, 2020, 34, 2410-2418.	1.6	1