
Yoshio Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Helical Polymers:  Conformation and Function. Chemical Reviews, 2001, 101, 4013-4038.	23.0	1,298
2	Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie - International Edition, 1998, 37, 1020-1043.	7.2	870
3	Asymmetric Polymerization. Chemical Reviews, 1994, 94, 349-372.	23.0	782
4	Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399, 449-451.	13.7	752
5	Chromatographic resolution. Journal of Chromatography A, 1986, 363, 173-186.	1.8	657
6	Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews, 2016, 116, 1094-1138.	23.0	560
7	Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. Journal of the American Chemical Society, 1979, 101, 4763-4765.	6.6	494
8	Chirality Assignment of Amines and Amino Alcohols Based on Circular Dichroism Induced by Helix Formation of a Stereoregular Poly((4-carboxyphenyl)acetylene) through Acidâ^'Base Complexation. Journal of the American Chemical Society, 1997, 119, 6345-6359.	6.6	435
9	Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 2008, 37, 2593.	18.7	428
10	Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chemical Reviews, 2009, 109, 6077-6101.	23.0	383
11	Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization. Journal of the American Chemical Society, 1992, 114, 1318-1329.	6.6	212
12	Living and Highly Isotactic Polymerization of Methyl Methacrylate by t-C4H9MgBr in Toluene. Polymer Journal, 1986, 18, 1037-1047.	1.3	207
13	Chromatographic chiral resolution. Journal of Chromatography A, 1987, 389, 95-102.	1.8	197
14	Chloromethylphenylcarbamate derivatives of cellulose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 1994, 670, 39-49.	1.8	190
15	Efficient Lewis Acid-Catalyzed Stereocontrolled Radical Polymerization of Acrylamides. Journal of the American Chemical Society, 2001, 123, 7180-7181.	6.6	186
16	Effect of Tacticity of Poly(N-isopropylacrylamide) on the Phase Separation Temperature of Its Aqueous Solutions. Polymer Journal, 2005, 37, 234-237.	1.3	180
17	Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. Journal of Chromatography A, 2014, 1363, 51-61.	1.8	169
18	Resolution of Enantiomers by HPLC on Optically Active Poly(triphenylmethyl Methacrylate). Journal of Liquid Chromatography and Related Technologies, 1986, 9, 369-384.	0.9	168

#	Article	IF	CITATIONS
19	Dimethyl-, dichloro- and chloromethylphenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 1995, 694, 101-109.	1.8	168
20	Chiral Stationary Phases for HPLC: Cellulose Tris(3,5-dimethylphenylcarbamate) and Tris(3,5-dichlorophenylcarbamate) Chemically Bonded to Silica Gelâ^—. Journal of Liquid Chromatography and Related Technologies, 1987, 10, 1613-1628.	0.9	167
21	Preparation of Highly Isotactic Poly(methyl methacrylate) of Low Polydispersity. Polymer Journal, 1985, 17, 977-980.	1.3	151
22	Useful Chiral Stationary Phases for HPLC. Amylose Tris(3,5-dimethylphenylcarbamate) and Tris(3,5-dichlorophenylcarbamate) Supported on Silica Gel. Chemistry Letters, 1987, 16, 1857-1860.	0.7	151
23	Preparation of Silica Gel-Bonded Amylose through Enzyme-Catalyzed Polymerization and Chiral Recognition Ability of Its Phenylcarbamate Derivative in HPLC. Analytical Chemistry, 1996, 68, 2798-2804.	3.2	149
24	Stereospecific Free Radical Polymerization of Vinyl Esters Using Fluoroalcohols as Solvents. Macromolecules, 1998, 31, 7598-7605.	2.2	124
25	Stereospecific radical polymerization of 1-phenyldibenzosuberyl methacrylate affording a highly isotactic polymer. Macromolecules, 1993, 26, 867-868.	2.2	118
26	Chiral polymers for resolution of enantiomers. Journal of Polymer Science Part A, 2009, 47, 1731-1739.	2.5	115
27	Stereospecific Free-Radical Polymerization of Methacrylates Using Fluoroalcohols as Solvents. Macromolecules, 1999, 32, 5979-5981.	2.2	106
28	Asymmetric polymerization of triphenylmethyl methacrylate by optically active anionic catalysts. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18, 3043-3051.	0.8	104
29	Stereocontrol during the free-radical polymerization of methacrylates with Lewis acids. Journal of Polymer Science Part A, 2001, 39, 1463-1471.	2.5	101
30	Synthesis of Helical Poly(phenylacetylene)s with Amide Linkage Bearing <scp>l</scp> -Phenylalanine and <scp>l</scp> -Phenylglycine Ethyl Ester Pendants and Their Applications as Chiral Stationary Phases for HPLC. Macromolecules, 2013, 46, 8406-8415.	2.2	96
31	Asymmetric Polymerization of Isocyanates with Optically Active Anionic Initiators. Polymer Journal, 1993, 25, 391-396.	1.3	90
32	Immobilization of polysaccharide derivatives onto silica gel. Journal of Chromatography A, 2007, 1157, 151-158.	1.8	83
33	Pronounced Effects of Temperature and Monomer Concentration on Isotactic Specificity of Triphenylmethyl Methacrylate Polymerization through Free Radical Mechanism. Thermodynamic versus Kinetic Control of Propagation Stereochemistry. Polymer Journal, 1996, 28, 556-558.	1.3	80
34	An optically active stereoregular polyphenylacetylene derivative as a novel chiral stationary phase for HPLC. Journal of the Chemical Society Chemical Communications, 1994, , 1811.	2.0	77
35	Helix-Sense-Selective Free Radical Polymerization of 1-Phenyldibenzosuberyl Methacrylate. Polymer Journal, 1996, 28, 51-60.	1.3	74
36	Optical Resolution on Regioselectively Carbamoylated Cellulose and Amylose with 3,5-Dimethylphenyl and 3,5-Dichlorophenyl Isocyanates. Bulletin of the Chemical Society of Japan, 1993, 66, 2225-2232.	2.0	72

#	Article	IF	CITATIONS
37	Stereospecific and Asymmetric Polymerization of Diphenylpyridylmethyl Methacrylates. Polymer Journal, 1983, 15, 851-853.	1.3	69
38	Tris(cyclohexylcarbamate)s of Cellulose and Amylose as Potential Chiral Stationary Phases for High-Performance Liquid Chromatography and Thin-Layer Chromatography. Journal of the American Chemical Society, 2000, 122, 4056-4059.	6.6	69
39	Direct chromatographic separation of 2-arylpropionic acid enantiomers using tris(3,5-dimethylphenylcarbamate)s of cellulose and amylose as chiral stationary phases. Chirality, 1989, 1, 239-242.	1.3	68
40	Unusual Conformational Change of Optically Active Poly(3-((S)-sec-butoxycarbonyl)phenyl) Tj ETQq0 0 0 rgBT /O	verlock 10 2.2	Tf 50 622 T
41	Effect of organic solvent, electrolyte salt and a loading of cellulose tris (3,5-dichlorophenyl-) Tj ETQq1 1 0.784314 Electrophoresis, 2001, 22, 3327-3334.	4 rgBT /Ov 1.3	erlock 10 Tf 67
42	Stereocontrol in radical polymerization. Chemical Record, 2001, 1, 46-52.	2.9	67
43	Copper(I)-Catalyzed Asymmetric Oxidative Coupling Polymerization of 2,3-Dihydroxynaphthalene Using Bisoxazoline Ligands. Macromolecules, 2003, 36, 2604-2608.	2.2	67
44	Chiral separations in capillary high-performance liquid chromatography and nonaqueous capillary electrochromatography using helically chiral poly(diphenyl-2-pyridylmethyl methacrylate) as chiral stationary phase. Electrophoresis, 1999, 20, 2772-2778.	1.3	64
45	Stereocontrol in the free-radical polymerization of methacrylates with fluoroalcohols. Journal of Polymer Science Part A, 2000, 38, 4693-4703.	2.5	64
46	Highly efficient enantioseparations in non-aqueous capillary electrochromatography using cellulose tris(3,5-dichlorophenylcarbamate) as chiral stationary phase. Journal of Separation Science, 2001, 24, 27-34.	1.3	64
47	Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives on silica gel. Chirality, 2003, 15, 77-82.	1.3	64
48	Isotactic-specific radical polymerization of methacrylamides in the presence of Lewis acids. Journal of Polymer Science Part A, 2002, 40, 2496-2500.	2.5	62
49	Facile syntheses of (+)- and (â^')-poly(triphenylmethyl methacrylate)s and their macromers. Journal of Polymer Science, Polymer Letters Edition, 1983, 21, 601-607.	0.4	61
50	Asymmetric polymerization of aromatic isocyanates with optically active anionic initiators. Journal of Polymer Science Part A, 1994, 32, 309-315.	2.5	59
51	HPLC enantioseparation on cellulose tris(3,5-dimethylphenylcarbamate) as a chiral stationary phase: Influences of pore size of silica gel, coating amount, coating solvent, and column temperature on chiral discrimination. Chirality, 1996, 8, 446-451.	1.3	58
52	Induction of a Single-Handed Helical Conformation through Radical Polymerization of Optically Active Phenyl-2-pyridyl-o-tolylmethyl Methacrylate. Macromolecules, 1995, 28, 5135-5138.	2.2	57
53	Asymmetric Oxidative Coupling Polymerization of Optically Active Tetrahydroxybinaphthalene Derivative. Macromolecules, 2002, 35, 2437-2439.	2.2	56
54	Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups. Journal of Chromatography A, 2010, 1217, 1041-1047.	1.8	56

ΥΟSHIO ΟΚΑΜΟΤΟ

#	Article	IF	CITATIONS
55	Effects of Tacticity and Molecular Weight of Poly(<i>N</i> -isopropylacrylamide) on Its Glass Transition Temperature. Macromolecules, 2011, 44, 5822-5824.	2.2	55
56	Tris(1-phenylethylcarbamate)s of Cellulose and Amylose as Useful Chiral Stationary Phases for Chromatographic Optical Resolution. Chemistry Letters, 1990, 19, 909-912.	0.7	53
57	Optical Resolution of [2,2]Paracyclophanes by Highâ€Performance Liquid Chromatography on Tris(3,5â€dimethylphenylcarbamates) of Celllulos and Amylose. Chemische Berichte, 1990, 123, 841-845.	0.2	53
58	Optical resolution by high-performance liquid chromatography on benzylcarbamates of cellulose and amylose. Journal of Chromatography A, 1993, 641, 267-278.	1.8	52
59	Comparative capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate) as chiral stationary phase. Journal of Separation Science, 2001, 24, 251-257.	1.3	50
60	Chromatographic Optical Resolution by Optically Active Poly(diphenyl-2-pyridylmethyl methacrylate) with a Highly One-Handed Helical Structure. Polymer Journal, 1989, 21, 439-445.	1.3	49
61	Tris(chloro- and methyl-disubstituted phenylcarbamate)s of Cellulose as Chiral Stationary Phases for Chromatographic Enantioseparation. Chemistry Letters, 1993, 22, 617-620.	0.7	49
62	Enantioseparation on 3,5-dichloro- and 3,5-dimethylphenylcarbamates of polysaccharides as chiral stationary phases for high-performance liquid chromatography. Reactive and Functional Polymers, 1998, 37, 183-188.	2.0	48
63	Phenylcarbamate derivatives of cellulose and amylose immobilized onto silica gel as chiral stationary phases for high-performance liquid chromatography. Journal of Polymer Science Part A, 2004, 42, 4704-4710.	2.5	48
64	Asymmetric Polymerization of 1-(3-Pyridyl)dibenzosuberyl Methacrylate and Chiral Recognition by the Obtained Optically Active Polymer Having Single-Handed Helical Conformation. Polymer Journal, 1998, 30, 635-640.	1.3	47
65	Stereocontrol during the free-radical polymerization of methacrylamides in the presence of Lewis acids. Journal of Polymer Science Part A, 2003, 41, 1027-1033.	2.5	47
66	Chiroptical Properties of Oligomers of m-Methylphenyl Isocyanate Bearing an Optically Active End-Group. Polymer Journal, 1995, 27, 141-146.	1.3	45
67	The effect of pore size of silica gel and concentration of buffer on capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate). Journal of Separation Science, 2001, 24, 635-642.	1.3	45
68	Enantioseparation on Fluoro-Methylphenylcarbamates of Cellulose and Amylose as Chiral Stationary Phases for High-Performance Liquid Chromatography. Polymer Journal, 1995, 27, 856-861.	1.3	44
69	Preparation and chiral recognition ability of cellulose 3,5-dimethylphenylcarbamate immobilized on silica gel through radical polymerization. Journal of Polymer Science Part A, 2003, 41, 3703-3712.	2.5	44
70	Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography. Chirality, 2008, 20, 288-294.	1.3	44
71	Polysaccharide derivatives as chiral stationary phases in HPLC. Journal of High Resolution Chromatography, 1990, 13, 708-712.	2.0	43
72	Unusual solvent effects on chiroptical properties of an optically active regioregular polythiophene in solution. , 2000, 12, 396-399.		43

5

#	Article	IF	CITATIONS
73	Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing <scp>L</scp> â€leucine ethyl ester pendants as chiral stationary phases for HPLC. Journal of Polymer Science Part A, 2013, 51, 2271-2278.	2.5	43
74	Mechanism of Asymmetric Polymerization of Triphenylmethyl Methacrylate, Separation and Optical Resolution of Oligomers. Chemistry Letters, 1987, 16, 759-762.	0.7	42
75	Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2014, 1365, 86-93.	1.8	42
76	Optical resolution of atropisomeric poly(triphenylmethyl methacrylate). Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 451-455.	0.4	41
77	On some bulk properties of poly(macromonomer)s. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 409-413.	1.1	40
78	Enantiomer enrichment of oxprenolol through cellulose tris(3,5-dimethylphenylcarbamate) membrane. Journal of Applied Polymer Science, 1994, 54, 1087-1091.	1.3	40
79	Helical Structure of Oligo- and Poly(m-substituted phenyl isocyanate)s Bearing an Optically Active End-Group. Polymer Journal, 1998, 30, 100-105.	1.3	40
80	Asymmetric Polymerization of N,N-Disubstituted Acrylamides. Polymer Journal, 1981, 13, 175-177.	1.3	38
81	Organicâ€Inorganic Hybrid Materials for Efficient Enantioseparation Using Cellulose 3,5â€Dimethylphenylcarbamate and Tetraethyl Orthosilicate. Chemistry - an Asian Journal, 2008, 3, 1494-1499.	1.7	38
82	Stereospecific Free Radical and RAFT Polymerization of Bulky Silyl Methacrylates for Tacticity and Molecular Weight Controlled Poly(methacrylic acid). Macromolecules, 2011, 44, 9108-9117.	2.2	38
83	Enantioseparation using helical polyacetylene derivatives. TrAC - Trends in Analytical Chemistry, 2020, 123, 115762.	5.8	38
84	Title is missing!. Die Makromolekulare Chemie, 1978, 179, 485-496.	1.1	37
85	Helix formation of poly(phenylacetylene) derivatives bearing amino groups at the meta position induced by optically active carboxylic acids. Journal of Polymer Science Part A, 2001, 39, 3180-3189.	2.5	37
86	Poly(β-amino acid)s. IV. Synthesis and conformational properties of poly(α-isobutyl-L-aspartate). Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 2237-2251.	0.8	36
87	Stereospecific Radical Polymerization of α-(Alkoxymethyl)acrylates Controlled by Lewis Acid Catalysts: Mechanistic Study and Effect of Amino Alcohols as Ligand for Zinc Bromide. Macromolecules, 2001, 34, 4724-4729.	2.2	36
88	Controlled Immobilization of Polysaccharide Derivatives for Efficient Chiral Separation. Israel Journal of Chemistry, 2011, 51, 1096-1106.	1.0	36
89	Chiral Dendrophanes, Dendro[2]rotaxanes, and Dendro[2]catenanes: Synthesis and Chiroptical Phenomena. European Journal of Organic Chemistry, 2000, 2000, 3059-3067.	1.2	35
90	Efficient Immobilization of Cellulose Phenylcarbamate Bearing Alkoxysilyl Group onto Silica Gel by Intermolecular Polycondensation and Its Chiral Recognition. Chemistry Letters, 2006, 35, 1250-1251.	0.7	35

#	Article	IF	CITATIONS
91	Influence of vinyl monomers and temperature on immobilization of cellulose 3,5-dimethylphenylcarbamate onto silica gel as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2006, 1104, 62-68.	1.8	35
92	Heterotactic Polymers of $\hat{I}\pm$ -Substituted Acrylic Acid Esters. Polymer Journal, 1980, 12, 55-62.	1.3	34
93	Chromatographic Optical Resolution on 3,5-Disubstituted Phenylcarbamates of Cellulose and Amylose. Bulletin of the Chemical Society of Japan, 1990, 63, 955-957.	2.0	34
94	Helix-sense-selective polymerization of phenyl[bis(2-pyridyl)]methyl methacrylate and chiral recognition ability of the polymer. Journal of Polymer Science Part A, 1993, 31, 2721-2728.	2.5	34
95	Synthesis, Methanolysis, and Asymmetric Polymerization of meta- and para-substituted Triphenylmethyl Methacrylates. Polymer Journal, 1987, 19, 1183-1190.	1.3	33
96	Induced Helix of an Aliphatic Polyacetylene Detected by Circular Dichroism. Polymer Journal, 1998, 30, 69-71.	1.3	33
97	Solid-State Polymerization of Dibenzofulvene Leading to a Copolymer with Oxygen. Macromolecules, 2003, 36, 1433-1435.	2.2	33
98	Diazocines on Molecular Platforms. European Journal of Organic Chemistry, 2014, 2014, 5456-5461.	1.2	33
99	Resolution of enantiomers by HPLC on tris(4-alkoxyphenylcarbamate)s of cellulose and amylose. Chirality, 1993, 5, 616-621.	1.3	32
100	Stereocontrol in radical polymerization of acrylic monomers. Macromolecular Symposia, 2002, 183, 83-88.	0.4	32
101	Stereospecific polymerization of benzyl ?-(alkoxymethyl) acrylates. Journal of Polymer Science Part A, 1997, 35, 721-726.	2.5	30
102	Proton spin-lattice relaxation times of polymers of various tacticities in solution. Journal of Polymer Science, Polymer Letters Edition, 1976, 14, 51-53.	0.4	29
103	Helix-sense-selective polymerization of diphenyl-2-pyridylmethyl methacrylate with chiral anionic initiators. Chirality, 1991, 3, 277-284.	1.3	29
104	Enantioseparation on 4-halogen-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Chirality, 1997, 9, 63-68.	1.3	29
105	Free-radical copolymerization of vinyl esters using fluoroalcohols as solvents: The solvent effect on the monomer reactivity ratio. Journal of Polymer Science Part A, 2000, 38, 220-228.	2.5	29
106	Cellulose Derivative-based Beads as Chiral Stationary Phase for HPLC. Chemistry Letters, 2004, 33, 1188-1189.	0.7	29
107	Synthesis and Chiral Recognition of Novel Regioselectively Substituted Amylose Derivatives. Chemistry Letters, 2008, 37, 558-559.	0.7	29
108	Controlled synthesis and chiral recognition of immobilized cellulose and amylose tris(cyclohexylcarbamate)s/3-(triethoxysilyl)propylcarbamates as chiral packing materials for high-performance liquid chromatography. Journal of Chromatography A, 2012, 1246, 137-144.	1.8	29

Уозніо Окамото

#	Article	IF	CITATIONS
109	Dichloro-, dimethyl-, and chloromethylphenylcarbamate derivatives of cyclodextrins as chiral stationary phases for high-performance liquid chromatography. Chirality, 1996, 8, 402-407.	1.3	28
110	Stereochemical Control of Free-Radical Polymerization of Vinyl Monomers. ACS Symposium Series, 1998, , 451-462.	0.5	27
111	Stereospecific Radical Polymerization of N-Methyl Methacrylamide. Polymer Journal, 2000, 32, 694-699.	1.3	27
112	Direct resolution of C76 enantiomers by HPLC using an amylose-based chiral stationary phase. Chemical Communications, 2001, , 925-926.	2.2	27
113	Separation of racemic compounds on amylose and cellulose dimethylphenylcarbamate-coated zirconia in HPLC. Journal of Separation Science, 2003, 26, 1331-1336.	1.3	27
114	Stereoselective Synthesis of (R,R)-, (S,S)-, and (R,S)-Poly(2,3-dihydroxy-1,4-naphthylene) Derivatives by Asymmetric Oxidative Coupling Polymerization. Polymer Journal, 2003, 35, 592-597.	1.3	27
115	Enantioseparations in nonaqueous and aqueous capillary electrochromatography using helically chiral poly(diphenyl-2-pyridylmethylmethacrylate) as chiral stationary phase. Journal of Separation Science, 2000, 12, 398-406.	1.0	26
116	Enantioseparation by HPLC using phenylcarbonate, benzoylformate,p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phases. Chirality, 2005, 17, 299-304.	1.3	26
117	Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2013, 1286, 41-46.	1.8	26
118	Reactivity of methacrylates in anionic copolymerization with methyl methacrylate by n-BuLi. Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1161-1174.	0.8	25
119	Anionic polymerization of N-methacryloylaziridine. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 2647-2650.	0.8	25
120	Anionic Polymerization of Macrocyclic α-(Alkoxymethyl)acrylates Leading to Novel Vinyl Polymer with Crown Ether Type Side Chain. Macromolecules, 2002, 35, 2432-2434.	2.2	25
121	Synthesis and chiral recognition ability of optically active poly{N-[(R)-?-methoxycarbonylbenzyl]methacrylamide} with various tacticities by radical polymerization using Lewis acids. Journal of Polymer Science Part A, 2003, 41, 3354-3360.	2.5	25
122	Stereospecific polymerization of o-methoxystyrene by anionic initiators. Journal of Polymer Science Part A-1, Polymer Chemistry, 1969, 7, 1933-1946.	0.7	24
123	Abnormal chiroptical properties of the copolymers of (S)-(-)-α-methylbenzyl methacrylate and trityl methacrylate. Journal of Polymer Science, Polymer Letters Edition, 1977, 15, 589-593.	0.4	24
124	Microstructure of the copolymers of methyl methacrylate with other methacrylates obtained by radical and anionic copolymerizations in tetrahydrofuran. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 1215-1225.	0.8	24
125	Enantioseparation of atropisomeric 1,1?-binaphthyl-2,2?-diyl hydrogen phosphate in capillary electrophoresis by using di- and oligosaccharides as chiral selectors: di- and oligosaccharide chiral selectors in capillary electrophoresis. Chirality, 1998, 10, 134-139.	1.3	24
126	Enantiomer separation of fungicidal triazolyl alcohols by normal phase HPLC on polysaccharide-based chiral stationary phases. Chirality, 1999, 11, 195-200.	1.3	24

#	Article	IF	CITATIONS
127	Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation. Journal of Chromatography A, 2018, 1572, 54-61.	1.8	24
128	RESOLUTION OF ENANTIOMERS BY HPLC ON CELLULOSETRANS- ANDCIS-TRIS(4-PHENYLAZOPHENYLCARBAMATE). Chemistry Letters, 1986, 15, 983-986.	0.7	23
129	Chromatographic Optical Resolution on Polysaccharide Carbamate Phases. ACS Symposium Series, 1991, , 101-113.	0.5	23
130	Stereospecific Polymerization of N,N-Diphenylacrylamide. Polymer Journal, 1996, 28, 682-685.	1.3	23
131	Stereospecific polymerization of vinyl acetate in fluoroalcohols. Synthesis of syndiotactic poly(vinyl) Tj ETQq1 1	0.784314 1.6	rgBT /Overloc
132	Stereospecific Radical Polymerization of α-(Alkoxymethyl)acrylates Controlled by a Catalytic Amount of Zinc Halides. Macromolecules, 2000, 33, 820-824.	2.2	23
133	Stereocontrol using Lewis acids in radical polymerization. Macromolecular Symposia, 2003, 195, 75-80.	0.4	23
134	Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography. Journal of Chromatography A, 2016, 1467, 199-205.	1.8	23
135	Anionic Copolymerizations of 1,1-Diphenylethylene with o- and p-Methoxystyrene. Polymer Journal, 1970, 1, 13-18.	1.3	22
136	Optical resolution of ?-lactams by chiral HPLC on tris(phenylcarbamate)s of cellulose and amylose. Chirality, 1989, 1, 216-222.	1.3	22
137	Synthesis and Chiral Recognition of Helical Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1771-1783.	1.2	22
138	Helix-Sense-Selective and Enantiomer-Selective Polymerization of a Chiral Methacrylate by Anionic and Free-Radical Mechanisms. Polymer Journal, 1999, 31, 464-469.	1.3	22
139	Novel Initiating System for the Stereocontrolled Radical Polymerization of Acrylamides: Alkyl Bromide/Rare Earth Metal Triflate System. Polymer Journal, 2004, 36, 728-736.	1.3	22
140	Enantiomeric Differentiation by Synthetic Helical Polymers. Topics in Current Chemistry, 2013, 340, 41-72.	4.0	22
141	Enantioseparation Using Cellulose Tris(3,5-dimethylphenylcarbamate) as Chiral Stationary Phase for HPLC: Influence of Molecular Weight of Cellulose. Molecules, 2016, 21, 1484.	1.7	22
142	Asymmetric selective polymerization of racemic methacrylates with the cyclohexylmagnesium bromide-(â^')-sparteine system. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 1385-1395.	0.8	21
143	Optically active poly(diphenylâ€2â€pyridylmethyl methacrylate): Asymmetric synthesis, stability of helix, and chiral recognition ability. Journal of Polymer Science, Polymer Symposia, 1986, 74, 125-139.	0.1	21
144	Chromatographic Optical Resolution of Enantiomers on Polyamides Containing 1,2-Disubstituted Cyclohexane Moiety as a Chiral Residue. Polymer Journal, 1991, 23, 1197-1207.	1.3	21

#	Article	IF	CITATIONS
145	Stereochemistry of Acrylate Polymerization in Toluene Using n-BuLi. Polymer Journal, 1999, 31, 479-481.	1.3	21
146	Living Cationic Polymerization of a Novel Bicyclic Conjugated Diene Monomer, Tetrahydroindene, and Its Block Copolymers with Vinyl Ether. Macromolecules, 2006, 39, 5280-5285.	2.2	21
147	Preparation and chiral recognition ability of crosslinked beads of polysaccharide derivatives. Journal of Separation Science, 2007, 30, 971-978.	1.3	21
148	Synthesis and chiral recognition of helical poly(phenylacetylene)s bearing <scp>l</scp> â€phenylglycinol and its phenylcarbamates as pendants. Journal of Polymer Science Part A, 2015, 53, 809-821.	2.5	21
149	Polymerization and asymmetric oligomerization of allylsilanes using chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium and -hafnium complexes. Macromolecular Chemistry and Physics, 1998, 199, 2211-2215.	1.1	20
150	Stereochemistry of Free-Radical Polymerization of Bulky Vinyl Esters. Polymer Journal, 1998, 30, 681-683.	1.3	20
151	Anionic polymerization ofo-substituted styrene derivatives: Control of reactivity and stereochemistry by aminomethyl group. Journal of Polymer Science Part A, 2000, 38, 4088-4094.	2.5	20
152	Revised Interpretation for N-Cyclohexylmaleimide Polymerization in the Presence of an Optically Active Cobalt(II) Complex:  Polymerization Mediated by Anionic Species Formed through Monomerâ^'Co(II) Complexâ^'O2 Interaction. Macromolecules, 2003, 36, 3498-3504.	2.2	20
153	Synthesis and Immobilization of Amylose Derivatives Bearing a 4- <i>tert</i> Butylbenzoate Group at the 2-Position and 3,5-Dichlorophenylcarbamate/3-(Triethoxysilyl)propylcarbamate Groups at 3- and 6-Positions as Chiral Packing Material for HPLC. Chemistry Letters, 2010, 39, 442-444.	0.7	20
154	Asymmetric polymerization of optically active phenyl-2-pyridyl-o-tolylmethyl methacrylate and remarkable conformational change of the polymer. Journal of Polymer Science, Part C: Polymer Letters, 1987, 25, 297-301.	0.7	19
155	Optical resolution of ?-lactams on 1-phenylethylcarbamates of cellulose and amylose. Chirality, 1992, 4, 122-124.	1.3	19
156	Free-radical polymerization of vinyl esters using fluoroalcohols as solvents: Effect of monomer structure on stereochemistry. Journal of Polymer Science Part A, 1999, 37, 2677-2683.	2.5	19
157	Anionic Polymerizations and Copolymerizations of Methacrylates-Reactivity of Monomer and Tacticity of Polymer. Journal of Macromolecular Science Part A, Chemistry, 1975, 9, 983-1006.	0.4	18
158	Asymmetric and Enantiomer-Selective Polymerization of Phenyl-2-pyridyl-o-tolylmethyl Methacrylate. Polymer Journal, 1987, 19, 897-904.	1.3	18
159	Chiral recognition ability of amylose derivatives bearing regioselectively different carbamate pendants at 2,3- and 6-positions. Carbohydrate Polymers, 2019, 218, 30-36.	5.1	18
160	Influence of the substituents on phenyl groups on enantioseparation property of amylose phenylcarbamates. Carbohydrate Polymers, 2020, 241, 116372.	5.1	18
161	Optically Active Polymers with Chiral Recognition Ability. Topics in Stereochemistry, 2004, , 157-208.	2.0	17
162	Immobilization and chromatographic evaluation of novel regioselectively substituted amyloseâ€based chiral packing materials for HPLC. Chirality, 2011, 23, 878-886.	1.3	17

#	Article	IF	CITATIONS
163	Precision synthesis, structure and function of helical polymers. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 246-261.	1.6	17
164	Immobilization of helical poly(phenylacetylene)s having l-phenylalanine ethyl ester pendants onto silica gel as chiral stationary phases for HPLC. Polymer, 2017, 131, 17-24.	1.8	17
165	Polymerization of optically active 2-fluorophenyl-4-fluorophenyl-2-pyridylmethyl methacrylate with anionic and radical initiators: Stereospecificity and helix-sense selection. Journal of Polymer Science Part A, 1999, 37, 2645-2648.	2.5	16
166	Catalytic Stereocontrol by Scandium Trifluoromethanesulfonate in Radical Polymerization of α-(Alkoxymethyl)acrylates. Polymer Journal, 2000, 32, 1017-1021.	1.3	16
167	Synthesis and structure of poly(phenyl isocyanate)s bearing an optically active alkoxyl group. Journal of Physical Organic Chemistry, 2000, 13, 361-367.	0.9	16
168	Stereospecific Polymerization of Vinyl Acetate in Fluoroalcohols and Synthesis of Syndiotactic Poly(vinyl alcohol). Polymer Journal, 2001, 33, 534-539.	1.3	16
169	Lewis Acid-Catalyzed Tacticity Control during Radical Polymerization of (Meth)acrylamides. ACS Symposium Series, 2003, , 59-71.	0.5	16
170	Influence of Helical Structure on Chiral Recognition of Poly(phenylacetylene)s Bearing Phenylcarbamate Residues of <scp>L</scp> â€Phenylglycinol and Amide Linage as Pendants. Chirality, 2015, 27, 500-506.	1.3	16
171	Influence of different sequences of <scp>l</scp> -proline dipeptide derivatives in the pendants on the helix of poly(phenylacetylene)s and their enantioseparation properties. Polymer Chemistry, 2019, 10, 4810-4817.	1.9	16
172	Optical Resolution by High-Performance Liquid Chromatography (HPLC) Using Polysaccharide Derivatives as Chiral Stationary Phases. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 41-53.	0.0	16
173	Chiral recognition of cellulose tris(5-fluoro-2-methylpheylcarbamate) toward (R)- and (S)-1,1â€2-bi-2-naphthol detected by negative ion fast-atom bombardment mass spectrometry. , 1999, 13, 2011-2013.		15
174	Stereospecific radical polymerization of fluoroalkyl acrylates. Journal of Polymer Science Part A, 2000, 38, 1024-1032.	2.5	15
175	Long Chain-Substituted and Triply Functionalized Molecular Knots – Synthesis, Topological Chirality and Monolayer Formation. European Journal of Organic Chemistry, 2007, 2007, 45-52.	1.2	15
176	Synthesis of helical poly(phenylacetylene) derivatives bearing diastereomeric pendants for enantioseparation by HPLC. New Journal of Chemistry, 2019, 43, 3439-3446.	1.4	15
177	Enantioseparation using chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2020, 1623, 461174.	1.8	15
178	The molecular structure of diphenylmethyl methacrylate. Die Makromolekulare Chemie, 1982, 183, 2863-2870.	1.1	14
179	Helix-Sense-Selective Polymerization of 1-Phenyldibenzosuberyl Methacrylate by Free Radical Mechanism Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 251-255.	1.6	14
180	Chiral Ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium 2,2′-Biphenolate. Separation and Application to Asymmetric Polymerization. Polymer Journal, 1997, 29, 384-386.	1.3	14

Уозніо Окамото

#	Article	IF	CITATIONS
181	(?)-Sparteine: The compound that most significantly influenced my research. Journal of Polymer Science Part A, 2004, 42, 4480-4491.	2.5	14
182	Enantioseparation of atropisomeric 1,1?-binaphthyl-2,2?-diyl hydrogen phosphate in capillary electrophoresis by using di- and oligosaccharides as chiral selectors: di- and oligosaccharide chiral selectors in capillary electrophoresis. Chirality, 1998, 10, 134-139.	1.3	14
183	Anionic Polymerization of 2,3-Dimethylbutadiene. Polymer Journal, 1971, 2, 663-669.	1.3	13
184	Optical Activity of Isotactic Oligomers of Methyl Methacrylate. Polymer Journal, 1989, 21, 199-201.	1.3	13
185	Crystal Structure of Methyl Methacrylate Dimer. Revised meso/racemo Assignment for the Dimer. Polymer Journal, 1989, 21, 935-939.	1.3	13
186	Stereospecific anionic polymerization of chiral benzyl ?-[(1-phenylethoxy)methyl]acrylate. Chirality, 1998, 10, 711-716.	1.3	13
187	Asymmetric Polymerization of 9-Phenylfluoren-9-yl Methacrylate Leading to a Polymer with Main-Chain Configurational Chirality. Synthesis of Optically Active Poly(methyl methacrylate). Polymer Journal, 1998, 30, 596-600.	1.3	13
188	4,7,11-Triheterotrishomocubanes – Propeller-Shaped Highly Symmetrical Chiral Molecules Derived from Barrelene. European Journal of Organic Chemistry, 2006, 2006, 2590-2600.	1.2	13
189	Temperature-Triggered Switchable Helix-Helix Inversion of Poly(phenylacetylene) Bearing l-Valine Ethyl Ester Pendants and Its Chiral Recognition Ability. Molecules, 2016, 21, 1583.	1.7	13
190	Tacticity measurement of polymethacrylate by peak-eliminated fourier-transform NMR. Journal of Polymer Science, Polymer Letters Edition, 1976, 14, 531-535.	0.4	12
191	Asymmetric polymerization of optically active phenyl-2-pyridyl-M-tolylmethyl methacrylate and stereomutation of the polymer. Journal of Polymer Science Part A, 1991, 29, 287-289.	2.5	12
192	Asymmetric Anionic Polymerization of N-3-Hydroxyphenyl-N-phenylacrylamide Derivatives. Polymer Journal, 1998, 30, 352-355.	1.3	12
193	Anionic Polymerization of Triphenylmethyl Methacrylate. ACS Symposium Series, 1981, , 353-365.	0.5	11
194	Stereospecific and asymmetric polymerization of 1â€phenyldibenzosuberyl methacrylate with radical and anionic initiators. Macromolecular Symposia, 1995, 89, 479-488.	0.4	11
195	Microstructure of methyl methacrylate-trityl methacrylate copolymer obtained by n-BuLi in THF. Journal of Polymer Science, Polymer Letters Edition, 1975, 13, 273-277.	0.4	10
196	Title is missing!. Die Makromolekulare Chemie, 1978, 179, 1341-1343.	1.1	10
197	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 2737-2746.	1.1	10
198	Asymmetric selective polymerization of racemic 1,2-diphenylethyl methacrylate with the ethylmagnesium bromide-(â^')-sparteine complex. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 1831-1837.	0.8	10

#	Article	IF	CITATIONS
199	Nitro―und Allyloxyâ€substituierte helicale [2.2]Metacyclophane: Synthese, Circulardichroismus und Röntgenâ€Kristallstrukturanalysen. Chemische Berichte, 1991, 124, 1585-1590.	0.2	10
200	Disposition of enantiomers of sulpiride in humans and rats. Biopharmaceutics and Drug Disposition, 1993, 14, 475-481.	1.1	10
201	Asymmetric anionic polymerization of (2-fluorophenyl)(4-fluorophenyl)(2-pyridyl)methyl methacrylate leading to a helical polymer. Journal of Polymer Science Part A, 1998, 36, 2013-2019.	2.5	10
202	Stereospecific polymerization ofα-substituted acrylates. Macromolecular Symposia, 2000, 157, 209-216.	0.4	10
203	Cellulose phenylcarbamate-derived hybrid bead-type chiral packing materials for efficient chiral recognition. Cellulose, 2021, 28, 347-358.	2.4	10
204	Anionic Copolymerizations of trans-Stilbene with Butadiene, Isoprene, and 2,3-Dimethylbutadiene. Polymer Journal, 1970, 1, 147-154.	1.3	9
205	Heterotactic polymers of methyl α-(p-bromophenyl) acrylate and methyl α-(p-chlorophenyl) acrylate. Journal of Polymer Science, Polymer Letters Edition, 1975, 13, 731-735.	0.4	9
206	Mechanism of the asymmetric-selective polymerization of (RS)-α-methylbenzyl methacrylate initiated by the cyclohexylmagnesium chlorideor bromide-(—)-sparteine system. Journal of Polymer Science, Polymer Letters Edition, 1979, 17, 293-298.	0.4	9
207	Poly(β-Amino acids). VI. Synthesis and conformational properties of poly[(r)-3-pyrrolidinecarboxylic acid]. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 3867-3878.	0.8	9
208	Bishydrocotarnines – Stereochemical Aspects. Archiv Der Pharmazie, 1986, 319, 1122-1129.	2.1	9
209	Helix-Sense-Selective Polymerization of 2-(6-Methylpyridyl)diphenylmethyl Methacrylate. Polymer Journal, 1989, 21, 719-724.	1.3	9
210	Synthesis of Polyesters from Terephthalaldehyde and Isophthalaldehyde through Tishchenko Reaction Catalyzed by the Ethylmagnesium Bromide-(â^²)-Sparteine Complex and Aluminum Alkoxides. Polymer Journal, 1997, 29, 261-268.	1.3	9
211	Polymers having the capability of resolving enantiomers Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1984, 42, 995-1004.	0.0	9
212	On the abnormal optical rotation of poly[trityl methacrylate-co-(S)-α-methylbenzyl methacrylate]. Journal of Polymer Science, Polymer Letters Edition, 1978, 16, 545-549.	0.4	8
213	Poly(β-Amino acids). V. Synthesis and conformation of oligomeric α-isobutyl-L-aspartate. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 1911-1921.	0.8	8
214	Title is missing!. Die Makromolekulare Chemie, 1984, 185, 913-932.	1.1	8
215	Title is missing!. Die Makromolekulare Chemie, 1984, 185, 933-955.	1.1	8
216	Study on the Solvent Effect on Radical Polymerization of Polystyrene Macromonomer. Polymer Journal, 1994, 26, 13-20.	1.3	8

#	Article	IF	CITATIONS
217	Chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl) complexes of zirconium and hafnium: separation and application to asymmetric polymerization. Macromolecular Rapid Communications, 1997, 18, 707-713.	2.0	8
218	Resolution and Rotational Barriers of Quinolinone and Acridone Sulfenamide Derivatives:Â Demonstration of the Sâ^'N Chiral Axis. Journal of Organic Chemistry, 2000, 65, 8613-8620.	1.7	8
219	Helical Structure of Liquid Crystalline Poly(N-((4-n-butylphenyl)diphenylmethyl) methacrylamide). Macromolecules, 2010, 43, 7386-7390.	2.2	8
220	Nuclear magnetic resonance studies of isoprenyllithium derived from 1,1-diphenyl-n-butyllithium-3,4-d5, and isoprene. Journal of Polymer Science Part A-1, Polymer Chemistry, 1971, 9, 1247-1260.	0.7	7
221	Polymerization of α,α-Dimethylbenzyl Methacrylate and Its Copolymerization with Methyl Methacrylate by Anionic Initiators. Polymer Journal, 1977, 9, 511-518.	1.3	7
222	Stereospecific Polymerization of Methacrylates with Ethylmagnesium Alkoxides. Polymer Journal, 1978, 10, 457-464.	1.3	7
223	The molecular structures of 1,1-diphenylethyl methacrylate and triphenylmethyl methacrylate. Die Makromolekulare Chemie, 1985, 186, 203-214.	1.1	7
224	Synthesis, characterization, and application of helical polymers. Macromolecular Symposia, 1996, 101, 343-354.	0.4	7
225	Stereospecific Anionic Polymerization of α-(N-tert-Butyl aminomethyl)acrylate Having Unprotected Amino Group. Polymer Journal, 1997, 29, 872-874.	1.3	7
226	Asymmetric Anionic and Free-Radical Polymerization of 10,10-Dimethyl- and 10,10-Dibutyl-9-phenyl-9,10-dihydroanthracen-9-yl Methacrylate Leading to Single-Handed Helical Polymers. Polymer Journal, 2001, 33, 306-309.	1.3	7
227	Helix-sense-selective polymerization of (1-methylpiperidin-4-yl)diphenylmethyl methacrylate by anionic and free-radical catalyses. Journal of Polymer Science Part A, 2001, 39, 1610-1614.	2.5	7
228	Stereochemistry in Anionic Polymerization of Styrene Derivatives Bearing Optically Active Amino Groups at ortho-Position. Polymer Journal, 2002, 34, 57-62.	1.3	7
229	Helixâ€senseâ€selective copolymerization of triphenylmethyl methacrylate with chiral 2â€isopropenylâ€4â€phenylâ€2â€oxazoline. Journal of Polymer Science Part A, 2019, 57, 441-447.	2.5	7
230	Stereospecific Polymerization of o-Methoxy- \hat{l} ±-methylstyrene. Polymer Journal, 1970, 1, 403-409.	1.3	6
231	Anionic copolymerization of optically active α-methylbenzyl methacrylate and trityl methacrylate. I. Reactivity of monomers. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 2917-2928.	0.8	6
232	Termination Stereochemistry in Asymmetric Anionic Polymerization of Triphenyhnethyl Methacrylate. Methylation and Protonation of Oligomer Anions. Polymer Journal, 1995, 27, 882-891.	1.3	6
233	Surface Structure Control of Macroporous Silica Gel by Atom Transfer Radical Polymerization Polymer Journal, 2001, 33, 902-905.	1.3	6
234	Application of TLC-MALDI/TOFMS to Identification of Unknown Mixtures Produced in an Organic Synthetic Process Journal of the Mass Spectrometry Society of Japan, 1999, 47, 274-280.	0.0	6

#	Article	IF	CITATIONS
235	NMR studies of chiral discrimination by phenylcarbamate derivatives of cellulose. Macromolecular Symposia, 1997, 120, 127-137.	0.4	5
236	Stereospecific Anionic Polymerization and Novel Hydrogen-Transfer Polymerization of α-(Aminomethyl)acrylates Having Unprotected Amino Group. Polymer Journal, 1999, 31, 1260-1266.	1.3	5
237	Stereospecific Anionic Polymerization of α-(Alkylthiomethyl)acrylates and α-(2-Thienylmethyl)acrylate. Polymer Journal, 1999, 31, 942-947.	1.3	5
238	Helicity Induction in N-[(4-Butyl)triphenylmethyl]methacrylamide Sequence via Radical Copolymerization with Chiral Monomers. Polymer Journal, 2006, 38, 1173-1181.	1.3	5
239	Synthesis and Enantioseparation Ability of Xylan Bisphenylcarbamate Derivatives as Chiral Stationary Phases in HPLC. Chirality, 2015, 27, 518-522.	1.3	5
240	Asymmetric-Selective Polymerization of 2,3-Epoxypropyl Methacrylate with Grignard Reagent-(â^')-Sparteine Systems in Toluene at â^'78°C. Polymer Journal, 1978, 10, 473-475.	1.3	4
241	Haloaldehyde Polymers XXXV. 1H, 19F, and 13C NMR Spectra and Stereochemistry of Bornyl Esters of Fluorochlorobromoacetic Acid. Polymer Journal, 1989, 21, 171-177.	1.3	4
242	Asymmetric Polymerization of Triphenylmethyl Methacrylate Using 9-Alkyl-9-fluorenyllithium–(–)-Sparteine Complexes. Influence of Organolithium Structure on the Propagation Stereochemistry. Polymer Journal, 1995, 27, 892-903.	1.3	4
243	Viscoelastic behaviors and molecular motions of highly syndiotactic poly(vinyl alcohol) fibers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 800-808.	2.4	4
244	Asymmetric Polymerization. , 2005, , 757-796.		4
245	Application of TLC-MALDI-TOFMS to Identification of Co(II) and Co(III) Acetylacetonates Journal of the Mass Spectrometry Society of Japan, 2002, 50, 15-17.	0.0	4
246			
	Radical Polymerization Behavior of Polystyrene Macromonomers in the Presence of Inert Polystyrene. Polymer Journal, 1994, 26, 1318-1324.	1.3	3
247		1.3 0.4	3 3
247 248	Polymer Journal, 1994, 26, 1318-1324.		
	 Polymer Journal, 1994, 26, 1318-1324. Preparation of polysaccharide derivatives and their chiral recognition mechanism. Macromolecular Symposia, 1995, 99, 15-23. Stereospecific Anionic Polymerization of Novel α-Substituted Acrylates Bearing Aromatic Heterocycles. 	0.4	3
248	 Polymer Journal, 1994, 26, 1318-1324. Preparation of polysaccharide derivatives and their chiral recognition mechanism. Macromolecular Symposia, 1995, 99, 15-23. Stereospecific Anionic Polymerization of Novel α-Substituted Acrylates Bearing Aromatic Heterocycles. Polymer Journal, 2000, 32, 173-177. 	0.4	3 3
248 249	 Polymer Journal, 1994, 26, 1318-1324. Preparation of polysaccharide derivatives and their chiral recognition mechanism. Macromolecular Symposia, 1995, 99, 15-23. Stereospecific Anionic Polymerization of Novel α-Substituted Acrylates Bearing Aromatic Heterocycles. Polymer Journal, 2000, 32, 173-177. Stereochemistry in Radical Polymerization of Vinyl Esters. ACS Symposium Series, 2000, , 57-67. Anionic Polymerization of Novel Styrene Derivatives Bearing Various Amino Groups at ortho-Position. 	0.4 1.3 0.5	3 3 3

Уозніо Окамото

#	Article	IF	CITATIONS
253	Modifications of TLC-MALDI-TOFMS for Lower Detection Limits Comparable with Conventional MALDI-TOFMS Journal of the Mass Spectrometry Society of Japan, 2001, 49, 127-132.	0.0	3
254	Preparation of cellulose derivative bearing bulky 4â€(2â€benzothienyl)phenylcarbamate substituents as chiral stationary phase for enantioseparation. Chirality, 2022, 34, 701-710.	1.3	3
255	Anionic Copolymerization of \hat{I} ±-Methylstyrene and 2, 3-Dimethylbutadiene. Polymer Journal, 1972, 3, 442-447.	1.3	2
256	1,1′-Bi(trishomobarrelenyl) - Synthesis and Chiroptic Properties. European Journal of Organic Chemistry, 2009, 2009, 1048-1052.	1.2	2
257	Synthesis and characterization of cellulose derivative-based hybrid beads as chiral stationary phases for efficient chromatographic enantioseparation. New Journal of Chemistry, 2021, 45, 6432-6437.	1.4	2
258	Mechanistic Study of Chiral Discrimination on Crystalline Polysaccharide Derivatives. Molecular Crystals and Liquid Crystals, 1996, 276, 7-12.	0.3	1
259	Polymerization and asymmetric oligomerization of allylsilanes using chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium and -hafnium complexes. , 1998, 199, 2211.		1
260	Anionic polymerization of oâ€substituted styrene derivatives: Control of reactivity and stereochemistry by aminomethyl group. Journal of Polymer Science Part A, 2000, 38, 4088-4094.	2.5	1
261	Stereocontrol in the free-radical polymerization of methacrylates with fluoroalcohols. , 2000, 38, 4693.		1
262	CHIRAL SYNTHETIC POLYMER PACKINGS. Mehtods in Chromatography, 1996, , 231-254.	0.0	1
263	Synthesis and utilization of helical, optically active polymers Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1989, 47, 1029-1039.	0.0	1
264	Anionic polymerization and copolymerization of S-methyl thiomethacrylate. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 3705-3712.	0.8	0
265	Comments on ?Living Polymerization: Rationale for Uniform Terminology? by Darling et al Journal of Polymer Science Part A, 2000, 38, 1742-1742.	2.5	0
266	Chiral Membranes for Enantioseparation. Journal of Fiber Science and Technology, 1995, 51, P150-P155.	0.0	0