
Kevyn Johannes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570345/publications.pdf Version: 2024-02-01

KEWN IOHANNES

#	Article	IF	CITATIONS
1	Open Sorption Systems. , 2022, , 526-541.		3
2	Thermodynamic equilibrium and kinetic study of lanthanum chloride heptahydrate dehydration for thermal energy storage. Journal of Energy Storage, 2022, 48, 103562.	3.9	3
3	An urban thermal tool chain to simulate summer thermal comfort in passive urban buildings. Building and Environment, 2022, 215, 108987.	3.0	5
4	Dynamic thermal bridge evaluation of window-wall joints using a model-based thermography method. Case Studies in Thermal Engineering, 2022, 35, 102117.	2.8	2
5	Artificial Neural Network Simulation of Energetic Performance for Sorption Thermal Energy Storage Reactors. Energies, 2021, 14, 3294.	1.6	2
6	Detailed and fast calculation of wall surface temperatures near thermal bridge area. Case Studies in Thermal Engineering, 2021, 25, 100936.	2.8	4
7	Integrating phase change materials in thermal energy storage systems for buildings. , 2021, , 381-422.		1
8	Sensitivity analysis of a zeolite energy storage model: Impact of parameters on heat storage density and discharge power density. Renewable Energy, 2020, 149, 468-478.	4.3	10
9	New kinetic model of the dehydration reaction of magnesium sulfate hexahydrate: Application for heat storage. Thermochimica Acta, 2020, 687, 178569.	1.2	21
10	Thermodynamic Efficiency of Water Vapor/Solid Chemical Sorption Heat Storage for Buildings: Theoretical Limits and Integration Considerations. Applied Sciences (Switzerland), 2020, 10, 489.	1.3	11
11	Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings. Renewable Energy, 2019, 132, 761-772.	4.3	22
12	Fast and accurate district heating and cooling energy demand and load calculations using reduced-order modelling. Applied Energy, 2019, 238, 963-971.	5.1	25
13	A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews, 2018, 94, 576-586.	8.2	50
14	Quantification of the natural convection perturbations on differential scanning calorimetry measurements of PCMs. Thermochimica Acta, 2017, 655, 145-154.	1.2	4
15	Thermodynamic study of MgSO4 – H2O system dehydration at low pressure in view of heat storage. Thermochimica Acta, 2017, 656, 135-143.	1.2	37
16	Storage of thermal solar energy. Comptes Rendus Physique, 2017, 18, 401-414.	0.3	84
17	Impact of the enthalpy function on the simulation of a building with phase change material wall. Energy and Buildings, 2016, 126, 220-229.	3.1	22
18	Numerical Simulation of Melting with Natural Convection Based on Lattice Boltzmann Method and Performed with CUDA Enabled GPU. Communications in Computational Physics, 2015, 17, 1201-1224.	0.7	8

Κένγη Johannes

#	Article	IF	CITATIONS
19	Chemisorption heat storage in buildings: State-of-the-art and outlook. Energy and Buildings, 2015, 106, 183-191.	3.1	24
20	Studying the evolution of both thermal and kinetic boundary layers in the vicinity of a vertical conductive gypsum plate under dynamic time-depending conditions at the building scale. Energy and Buildings, 2015, 86, 898-908.	3.1	5
21	Design of a PCM to air heat exchanger using dimensionless analysis: Application to electricity peak shaving in buildings. Energy and Buildings, 2015, 106, 65-73.	3.1	31
22	Numerical analysis of truncation error, consistency, and axis boundary condition for axis-symmetric flow simulations via the radius weighted lattice Boltzmann model. Computers and Fluids, 2015, 116, 46-59.	1.3	6
23	Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Applied Energy, 2015, 159, 80-86.	5.1	108
24	Phase change material wall optimization for heating using metamodeling. Energy and Buildings, 2015, 106, 216-224.	3.1	34
25	Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling. Applied Energy, 2015, 140, 269-274.	5.1	53
26	A Review on Chemisorption Heat Storage in Low-energy Buildings. Energy Procedia, 2014, 57, 2333-2341.	1.8	9
27	Interpretation of calorimetry experiments to characterise phase change materials. International Journal of Thermal Sciences, 2014, 78, 48-55.	2.6	42
28	Modeling phase change materials behavior in building applications: Comments on material characterization and model validation. Renewable Energy, 2014, 61, 132-135.	4.3	69
29	Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 374-381.	0.9	20
30	Optimizing energy and environmental performance of passive Trombe wall. Energy and Buildings, 2014, 70, 279-286.	3.1	115
31	Specification requirements for inter-seasonal heat storage systems in a low energy residential house. Energy Conversion and Management, 2014, 77, 628-636.	4.4	14
32	Urban energy simulation: Simplification and reduction of building envelope models. Energy and Buildings, 2014, 84, 193-202.	3.1	59
33	Sensitivity Analysis of the Energy Density in a Thermo Chemical Heat Storage Device. Energy Procedia, 2014, 48, 405-412.	1.8	6
34	Inter-seasonal Heat Storage in Low Energy House: From Requirements to TESS Specifications. Energy Procedia, 2014, 57, 2399-2407.	1.8	1
35	Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services. Frontiers of Architectural Research, 2013, 2, 147-161.	1.3	41
36	Melting with convection and radiation in a participating phase change material. Applied Energy, 2013, 109, 454-461.	5.1	33

Κένγη Johannes

#	Article	IF	CITATIONS
37	Experimental and modelling study of twin cells with latent heat storage walls. Energy and Buildings, 2011, 43, 2456-2461.	3.1	79
38	In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renewable Energy, 2011, 36, 1458-1462.	4.3	166
39	A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews, 2011, 15, 379-391.	8.2	801
40	Evaluation of Thermal Energy Storage Potential in Low-Energy Buildings in France. , 2011, , .		9
41	Integration of Thick Wall in TRNSYS Simulation. , 2011, , .		3
41 42	Integration of Thick Wall in TRNSYS Simulation. , 2011, , . Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 2010, 42, 1004-1009.	3.1	3 131
	Development and validation of a new TRNSYS type for the simulation of external building walls	3.1 2.9	
42	Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 2010, 42, 1004-1009. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor		131