Stephen D Weigand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570015/publications.pdf

Version: 2024-02-01

67 papers 5,688 citations

147801 31 h-index 102487 66 g-index

67 all docs

67 docs citations

67 times ranked

7034 citing authors

#	Article	IF	CITATIONS
1	Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 205-216.	0.8	581
2	Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Annals of Neurology, 2015, 78, 710-721.	5.3	485
3	Longitudinal tau PET in ageing and Alzheimer's disease. Brain, 2018, 141, 1517-1528.	7.6	309
4	Age, Sex, and <i>APOE</i> ε4 Effects on Memory, Brain Structure, and β-Amyloid Across the Adult Life Span. JAMA Neurology, 2015, 72, 511.	9.0	305
5	Age-specific population frequencies of cerebral \hat{l}^2 -amyloidosis and neurodegeneration among people with normal cognitive function aged 50â \in "89 years: a cross-sectional study. Lancet Neurology, The, 2014, 13, 997-1005.	10.2	297
6	A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity. Neurolmage: Clinical, 2016, 11, 802-812.	2.7	249
7	Updated TDP-43 in Alzheimer's disease staging scheme. Acta Neuropathologica, 2016, 131, 571-585.	7.7	244
8	Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurology, The, 2017, 16, 435-444.	10.2	241
9	Associations of Amyloid, Tau, and Neurodegeneration Biomarker Profiles With Rates of Memory Decline Among Individuals Without Dementia. JAMA - Journal of the American Medical Association, 2019, 321, 2316.	7.4	223
10	Widespread brain tau and its association with ageing, Braak stage and Alzheimer's dementia. Brain, 2018, 141, 271-287.	7.6	218
11	Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging–Alzheimer's Association Research Framework. JAMA Neurology, 2019, 76, 1174.	9.0	182
12	Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain, 2015, 138, 3747-3759.	7.6	170
13	Association of Elevated Amyloid Levels With Cognition and Biomarkers in Cognitively Normal People From the Community. JAMA Neurology, 2016, 73, 85.	9.0	160
14	Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study. Lancet Neurology, The, 2017, 16, 917-924.	10.2	159
15	[¹⁸ F]AVâ€1451 tau positron emission tomography in progressive supranuclear palsy. Movement Disorders, 2017, 32, 124-133.	3.9	136
16	The bivariate distribution of amyloid- \hat{l}^2 and tau: relationship with established neurocognitive clinical syndromes. Brain, 2019, 142, 3230-3242.	7.6	129
17	18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiology of Aging, 2014, 35, 2096-2106.	3.1	108
18	Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study. Lancet Neurology, The, 2016, 15, 56-64.	10.2	104

#	Article	IF	Citations
19	Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathologica, 2017, 134, 45-64.	7.7	94
20	Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1005-1014.	0.8	80
21	Predicting future rates of tau accumulation on PET. Brain, 2020, 143, 3136-3150.	7.6	74
22	Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology, 2014, 82, 1959-1967.	1.1	73
23	[¹⁸ F]AVâ€1451 clustering of entorhinal and cortical uptake in Alzheimer's disease. Annals of Neurology, 2018, 83, 248-257.	5.3	67
24	Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathologica, 2019, 137, 227-238.	7.7	65
25	Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers. Neurolmage, 2021, 224, 117433.	4.2	63
26	Cross-sectional associations of tau-PET signal with cognition in cognitively unimpaired adults. Neurology, 2019, 93, e29-e39.	1.1	62
27	Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. NeuroImage, 2017, 144, 113-127.	4.2	59
28	Sex differences in cerebrovascular pathologies on FLAIR in cognitively unimpaired elderly. Neurology, 2018, 90, e466-e473.	1.1	55
29	Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathologica, 2017, 133, 597-612.	7.7	53
30	The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiology of Aging, 2019, 77, 26-36.	3.1	51
31	Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants. Neurolmage: Clinical, 2020, 25, 102152.	2.7	46
32	Predicting Progression to Mild Cognitive Impairment. Annals of Neurology, 2019, 85, 155-160.	5.3	32
33	Sensitivity–Specificity of Tau and Amyloid β Positron Emission Tomography in Frontotemporal Lobar Degeneration. Annals of Neurology, 2020, 88, 1009-1022.	5.3	32
34	<scp>NIAâ€AA</scp> Alzheimer's Disease Framework: Clinical Characterization of Stages. Annals of Neurology, 2021, 89, 1145-1156.	5.3	31
35	Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study. Journal of Alzheimer's Disease, 2016, 55, 1069-1082.	2.6	30
36	Predicting clinical decline in progressive agrammatic aphasia and apraxia of speech. Neurology, 2017, 89, 2271-2279.	1.1	30

#	Article	IF	CITATIONS
37	Detection of Alzheimer's disease amyloid beta 1â€42, pâ€ŧau, and tâ€ŧau assays. Alzheimer's and Dementia, 2022, 18, 635-644.	0.8	28
38	Independent comparison of CogState computerized testing and a standard cognitive battery with neuroimaging. Alzheimer's and Dementia, 2014, 10, 779-789.	0.8	26
39	Selecting software pipelines for change in flortaucipir SUVR: Balancing repeatability and group separation. Neurolmage, 2021, 238, 118259.	4.2	24
40	Role of \hat{l}^2 -Amyloidosis and Neurodegeneration in Subsequent Imaging Changes in Mild Cognitive Impairment. JAMA Neurology, 2015, 72, 1475.	9.0	23
41	Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia. Neurology, 2016, 87, 691-698.	1.1	22
42	Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. Annals of Neurology, 2021, 89, 498-510.	5. 3	22
43	Evolution of neurodegeneration-imaging biomarkers from clinically normal to dementia in the Alzheimer disease spectrum. Neurobiology of Aging, 2016, 46, 32-42.	3.1	20
44	Microbleeds in Atypical Presentations of Alzheimer's Disease: A Comparison to Dementia of the Alzheimer's Type. Journal of Alzheimer's Disease, 2015, 45, 1109-1117.	2.6	19
45	Clinical Correlation of Multiple Sclerosis Immunopathologic Subtypes. Neurology, 2021, 97, e1906-e1913.	1.1	18
46	Dark Rims: Novel Sequence Enhances Diagnostic Specificity in Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 1052-1058.	2.4	14
47	Brain atrophy in primary ageâ€related tauopathy is linked to transactive response DNAâ€binding protein of 43 kDa. Alzheimer's and Dementia, 2019, 15, 799-806.	0.8	14
48	CSF biomarkers in Olmsted County. Neurology, 2020, 95, e256-e267.	1.1	14
49	Brainstem Biomarkers of Clinical Variant and Pathology in Progressive Supranuclear Palsy. Movement Disorders, 2022, 37, 702-712.	3.9	14
50	Frequency and distribution of TAR DNA-binding protein 43 (TDP-43) pathology increase linearly with age in a large cohort of older adults with and without dementia. Acta Neuropathologica, 2022, 144, 159-160.	7.7	14
51	Diffusion tensor imaging analysis in three progressive supranuclear palsy variants. Journal of Neurology, 2021, 268, 3409-3420.	3.6	12
52	<scp>Magnetic Resonance Imaging /scp> Correlates of Multiple Sclerosis Immunopathological Patterns. Annals of Neurology, 2021, 90, 440-454.</scp>	5. 3	12
53	Relationship of APOE, age at onset, amyloid and clinical phenotype in Alzheimer disease. Neurobiology of Aging, 2021, 108, 90-98.	3.1	11
54	Tractography of supplementary motor area projections in progressive speech apraxia and aphasia. Neurolmage: Clinical, 2022, 34, 102999.	2.7	11

#	Article	IF	CITATIONS
55	Sample size calculations for clinical trials targeting tauopathies: a new potential disease target. Journal of Neurology, 2015, 262, 2064-2072.	3.6	10
56	Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech. NeuroImage: Clinical, 2016, 11, 90-98.	2.7	10
57	Characterizing Amyloid-Positive Individuals With Normal Tau PET Levels After 5 Years. Neurology, 2022, 98, .	1.1	10
58	Long-term clinical, MRI, and cognitive follow-up in a large cohort of pathologically confirmed, predominantly tumefactive multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 441-452.	3.0	8
59	Longitudinal Amyloid-β PET in Atypical Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2020, 74, 377-389.	2.6	7
60	Cerebrospinal Fluid Dynamics and Discordant Amyloid Biomarkers. Neurobiology of Aging, 2021, 110, 27-36.	3.1	7
61	Histologic lesion type correlates of magnetic resonance imaging biomarkers in four-repeat tauopathies. Brain Communications, 2022, 4, .	3.3	5
62	In vivo detection of connectivity between cortical and white matter lesions in early MS. Multiple Sclerosis Journal, 2017, 23, 973-981.	3.0	4
63	Gray and White Matter Correlates of Dysphagia in Progressive Supranuclear Palsy. Movement Disorders, 2021, 36, 2669-2675.	3.9	4
64	CSF dynamics as a predictor of cognitive progression. NeuroImage, 2021, 232, 117899.	4.2	3
65	Left–Right Intensity Asymmetries Vary Depending on Scanner Model for FLAIR and T 1 Weighted MRI Images. Journal of Magnetic Resonance Imaging, 2022, , .	3.4	3
66	Brain tau deposition linked to systemic causes of death in normal elderly. Neurobiology of Aging, 2017, 50, 163-166.	3.1	2
67	Response to "On the reproducibility of quantitative susceptibility mapping and its potential as a clinical biomarker: A comment on Cogswell etÂal. 2021― NeuroImage, 2022, 251, 118992.	4.2	О