Mireia Corell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/456985/publications.pdf

Version: 2024-02-01

		394421	4	114414
64	1,220	19		32
papers	citations	h-index		g-index
C F	CE	CE		1021
65	65	65		1031
all docs	docs citations	times ranked		citing authors
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 2018, 202, 311-324.	5.6	116
2	Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agricultural and Forest Meteorology, 2014, 194, 29-35.	4.8	60
3	Quality attributes of table olives as affected by regulated deficit irrigation. LWT - Food Science and Technology, 2015, 62, 19-26.	5. 2	60
4	Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry, 2019, 277, 480-489.	8.2	53
5	Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chemistry, 2018, 240, 870-884.	8.2	51
6	Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Research International, 2017, 96, 72-83.	6.2	46
7	Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agricultural Water Management, 2019, 213, 212-221.	5.6	46
8	Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation. Journal of the Science of Food and Agriculture, 2017, 97, 444-451.	3.5	39
9	Low water stress conditions in table olive trees (Olea europaea L.) during pit hardening produced a different response of fruit and leaf water relations. Agricultural Water Management, 2012, 114, 11-17.	5.6	37
10	Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees. Agricultural Water Management, 2015, 148, 280-286.	5.6	36
11	Effect of the fruit position on the cluster on fruit quality, carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Research International, 2017, 100, 804-813.	6.2	35
12	The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology, 2015, 64, 997-1003.	5.2	34
13	Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Scientia Horticulturae, 2017, 226, 68-74.	3.6	34
14	Regulated deficit irrigation based on threshold values of trunk diameter fluctuation indicators in table olive trees. Scientia Horticulturae, 2013, 164, 102-111.	3.6	30
15	Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees. Agricultural Water Management, 2015, 161, 114-126.	5.6	27
16	Sensory Profile and Acceptability of HydroSOStainable Almonds. Foods, 2019, 8, 64.	4.3	27
17	Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards. Agricultural Water Management, 2016, 177, 308-316.	5.6	26
18	Nutrition Quality Parameters of Almonds as Affected by Deficit Irrigation Strategies. Molecules, 2019, 24, 2646.	3.8	26

#	Article	IF	CITATIONS
19	Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of "Arbequina―hydroSOStainable Olive Oil. Molecules, 2019, 24, 2148.	3.8	26
20	Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Scientia Horticulturae, 2019, 244, 68-74.	3.6	21
21	Effect of Water Stress on S <i>alvia officinalis</i> L. Bioproductivity and Its Bioelement Concentrations. Communications in Soil Science and Plant Analysis, 2012, 43, 419-425.	1.4	20
22	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	5.2	20
23	Long-Term Correlation between Water Deficit and Quality Markers in HydroSOStainable Almonds. Agronomy, 2020, 10, 1470.	3.0	19
24	Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load. Agricultural Water Management, 2011, 99, 121-127.	5.6	17
25	Effect of Spanishâ€style processing on the quality attributes of <i>HydroSOStainable</i> green olives. Journal of the Science of Food and Agriculture, 2019, 99, 1804-1811.	3.5	17
26	Jujube fruit water relations at fruit maturation in response to water deficits. Agricultural Water Management, 2016, 164, 110-117.	5.6	16
27	Stem water potential-based regulated deficit irrigation scheduling for olive table trees. Agricultural Water Management, 2020, 242, 106418.	5.6	16
28	Scheduling Regulated Deficit Irrigation with Leaf Water Potential of Cherry Tomato in Greenhouse and its Effect on Fruit Quality. Agriculture (Switzerland), 2021, 11, 669.	3.1	15
29	Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees. Agricultural Water Management, 2016, 164, 38-45.	5.6	14
30	Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons. Agricultural Water Management, 2019, 218, 115-123.	5.6	14
31	Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) $\hat{E}\frac{1}{2}$ Sunchocola $\hat{E}\frac{1}{4}$. Journal of Food Composition and Analysis, 2022, 105, 104220.	3.9	14
32	Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management. Frontiers in Plant Science, 2021, 12, 791711.	3.6	14
33	Chemical and sensorial characterization of spray dried <scp>hydroSOStainable</scp> almond milk. Journal of the Science of Food and Agriculture, 2021, 101, 1372-1381.	3.5	13
34	Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae, 2021, 7, 20.	2.8	13
35	Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening. Agricultural Water Management, 2022, 261, 107374.	5.6	13
36	Influence of rootstock on pistachio (Pistacia vera L. cv Kerman) water relations. Agricultural Water Management, 2018, 202, 263-270.	5.6	12

#	Article	IF	Citations
37	Extrapolating base-line trunk shrinkage reference equations across olive orchards. Agricultural Water Management, 2013, 126, 1-8.	5.6	11
38	Using band dendrometers in irrigation scheduling. Agricultural Water Management, 2014, 142, 29-37.	5.6	11
39	Evaluation of growers' efforts to improve the sustainability of olive orchards: Development of the hydroSOStainable index. Scientia Horticulturae, 2019, 257, 108661.	3.6	11
40	Approach using trunk growth rate data to identify water stress conditions in olive trees. Agricultural Water Management, 2019, 222, 12-20.	5.6	9
41	Absence of Yield Reduction after Controlled Water Stress during Prehaverst Period in Table OliveTrees. Agronomy, 2020, 10, 258.	3.0	9
42	EFFECT OF THE DEFICIT WATERING IN THE PRODUCTION AND QUALITY OF THE ESSENTIAL OIL, IN THE CULTIVATION OF SALVIA OFFICINALIS L Acta Horticulturae, 2009, , 281-288.	0.2	8
43	Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards. Agricultural Water Management, 2017, 192, 12-20.	5.6	8
44	Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers. Foods, 2021, 10, 2625.	4.3	8
45	Bruising susceptibility of Manzanilla de Sevilla table olive cultivar under Regulated Deficit Irrigation. Agricultural Water Management, 2017, 189, 1-4.	5.6	6
46	Criteria for HydroSOS Quality Index. Application to Extra Virgin Olive Oil and Processed Table Olives. Water (Switzerland), 2020, 12, 555.	2.7	6
47	Fruit Response to Water-Scarcity Scenarios. Water Relations and Biochemical Changes., 2018,, 349-375.		5
48	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	8.2	5
49	Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine. Beverages, 2021, 7, 35.	2.8	5
50	Weitere Mitteilungen über das Yohimbin. V. Versuche zu Hofmannschem Abbau. Zur Kenntnis der Methylâ€yohimboasäre. Berichte Der Deutschen Chemischen Gesellschaft Zu Berlin, 1916, 49, 1086-1090.	0.3	4
51	Reducing incidence of peel physiopathies and increasing antioxidant activity in pomegranate fruit under different irrigation conditions by preharvest application of chitosan. Scientia Horticulturae, 2019, 247, 247-253.	3.6	4
52	How does water stress and roasting temperature affect the physicochemical parameters of almonds?. LWT - Food Science and Technology, 2021, 150, 112073.	5.2	4
53	Irrigation of Pistachios., 2018,, 247-269.		3
54	Agronomical Effects of Deficit Irrigation in Apricot, Peach, and Plum Trees., 2018,, 87-109.		3

#	Article	IF	CITATIONS
55	Leaf mechanisms involved in the response of Cydonia oblonga trees to water stress and recovery. Agricultural Water Management, 2019, 221, 66-72.	5.6	3
56	Identification of water stress conditions in olive trees through frequencies of trunk growth rate. Agricultural Water Management, 2021, 247, 106735.	5.6	3
57	Wild solitary bees and their use of bee hotels in southwest Spain. Journal of Apicultural Research, 2021, 60, 862-870.	1.5	3
58	"HydroSOStainable―Concept: How Does Information Influence Consumer Expectations towards Roasted Almonds?. Agronomy, 2021, 11, 2254.	3.0	3
59	Evaluation of a simplified methodology to estimate the CWSI in olive orchards. Agricultural Water Management, 2022, 269, 107729.	5.6	3
60	Absolute Configuration of Falcarinol (9Z-heptadeca-1,9-diene-4,6-diyn-3-ol) from Pastinaca Sativa. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
61	Bruising response in â€~Manzanilla de Sevilla' olives to RDI strategies based on water potential. Agricultural Water Management, 2019, 222, 265-273.	5.6	2
62	Absolute configuration of falcarinol (9Z-heptadeca-1,9-diene-4,6-diyn-3-ol) from Pastinaca sativa. Natural Product Communications, 2013, 8, 1123-6.	0.5	2
63	Trunk growth rate frequencies as water stress indicator in almond trees. Agricultural Water Management, 2022, 271, 107765.	5.6	1
64	PREGERMINATION AND GERMINATION IN ASPARAGUS. Acta Horticulturae, 2002, , 341-345.	0.2	0