
Jens Hjerling-Leffler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4568751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 2015, 347, 1138-1142.	6.0	2,779
2	Molecular Architecture of the Mouse Nervous System. Cell, 2018, 174, 999-1014.e22.	13.5	2,002
3	Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience, 2015, 18, 145-153.	7.1	1,710
4	Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nature Genetics, 2019, 51, 404-413.	9.4	1,625
5	Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 2011, 71, 45-61.	1.5	1,151
6	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 2018, 50, 912-919.	9.4	893
7	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352, 1326-1329.	6.0	817
8	Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nature Genetics, 2019, 51, 394-403.	9.4	593
9	Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nature Genetics, 2018, 50, 920-927.	9.4	564
10	The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses lonotropic Serotonin Receptors. Journal of Neuroscience, 2010, 30, 16796-16808.	1.7	511
11	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	9.4	497
12	Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons. Journal of Neuroscience, 2010, 30, 1582-1594.	1.7	478
13	The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes. Neuron, 2008, 59, 722-732.	3.8	304
14	Disentangling neural cell diversity using single-cell transcriptomics. Nature Neuroscience, 2016, 19, 1131-1141.	7.1	283
15	Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages. Cerebral Cortex, 2009, 19, i1-i10.	1.6	263
16	Histone H2AX-dependent GABAA receptor regulation of stem cell proliferation. Nature, 2008, 451, 460-464.	13.7	255
17	Specialized cutaneous Schwann cells initiate pain sensation. Science, 2019, 365, 695-699.	6.0	231
18	Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biology, 2018, 16, e2006387.	2.6	226

JENS HJERLING-LEFFLER

#	Article	IF	CITATIONS
19	Environmental enrichment and the brain. Progress in Brain Research, 2002, 138, 109-133.	0.9	219
20	Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nature Genetics, 2020, 52, 482-493.	9.4	216
21	Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 2018, 46, 504-517.e7.	3.1	199
22	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	3.8	194
23	Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nature Methods, 2020, 17, 101-106.	9.0	187
24	Emergence of Functional Sensory Subtypes as Defined by Transient Receptor Potential Channel Expression. Journal of Neuroscience, 2007, 27, 2435-2443.	1.7	184
25	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
26	Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. Cell Reports, 2018, 24, 2179-2190.e7.	2.9	178
27	miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science, 2017, 356, 1168-1171.	6.0	124
28	The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development (Cambridge), 2005, 132, 2623-2632.	1.2	112
29	BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development (Cambridge), 2003, 130, 1479-1491.	1.2	103
30	In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Experimental Neurology, 2006, 198, 438-449.	2.0	100
31	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine, 2017, 9, 114.	3.6	86
32	Transcription and Signaling Regulators in Developing Neuronal Subtypes of Mouse and Human Enteric Nervous System. Gastroenterology, 2018, 154, 624-636.	0.6	76
33	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Molecular Psychiatry, 2021, 26, 2070-2081.	4.1	48
34	Influence of environmental manipulation on exploratory behaviour in male BDNF knockout mice. Behavioural Brain Research, 2009, 197, 339-346.	1.2	47
35	Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Molecular Psychiatry, 2019, 24, 182-197.	4.1	47
36	BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. Journal of Chemical Neuroanatomy, 2016, 71, 1-5.	1.0	36

JENS HJERLING-LEFFLER

#	Article	IF	CITATIONS
37	Regulation of Boundary Cap Neural Crest Stem Cell Differentiation After Transplantation. Stem Cells, 2009, 27, 1592-1603.	1.4	34
38	The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Frontiers in Neural Circuits, 2012, 6, 44.	1.4	34
39	Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiology of Disease, 2013, 49, 118-127.	2.1	30
40	Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes. PLoS Computational Biology, 2019, 15, e1007113.	1.5	28
41	Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biology, 2020, 18, 6.	1.7	28
42	Maternal thyroid hormone is required for parvalbumin neurone development in the anterior hypothalamic area. Journal of Neuroendocrinology, 2018, 30, e12573.	1.2	27
43	Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. American Journal of Human Genetics, 2022, 109, 1077-1091.	2.6	27
44	En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16336-16341.	3.3	14
45	Sticking out of the crowd: the molecular identity and development of cholecystokininâ€containing basket cells. Journal of Physiology, 2012, 590, 703-714.	1.3	13
46	Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons. Journal of Neuroscience, 2021, 41, 8876-8886.	1.7	10
47	Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. ELife, 2020, 9, .	2.8	9
48	ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. Journal of Cell Biology, 2020, 219, .	2.3	6
49	Increased progenitor proliferation and apoptotic cell death in the sensory lineage of mice overexpressing N-myc. Cell and Tissue Research, 2006, 323, 81-90.	1.5	5
50	Intrinsic electrophysiological properties predict variability in morphology and connectivity among striatal Parvalbumin-expressing Pthlh-cells. Scientific Reports, 2020, 10, 15680.	1.6	5
51	Editorial overview: Rare CNV disorders and neuropsychiatric phenotypes: opportunities, challenges, solutions. Current Opinion in Genetics and Development, 2021, 68, iii-ix.	1.5	3