Jun Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4568666/jun-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45 6,235 19 47 g-index

47 7,266 ext. papers ext. citations 5.4 avg, IF 5.26

L-index

#	Paper	IF	Citations
45	Distal leaf removal made balanced source-sink vines, delayed ripening, and increased flavonol composition in Cabernet Sauvignon grapes and wines in the semi-arid Xinjiang. <i>Food Chemistry</i> , 2022 , 366, 130582	8.5	3
44	Cluster spatial positions varied the phenolics profiles of 'Cabernet Sauvignon' grapes and wines under a fan training system with multiple trunks <i>Food Chemistry</i> , 2022 , 387, 132930	8.5	O
43	Effect of the Seasonal Climatic Variations on the Accumulation of Fruit Volatiles in Four Grape Varieties Under the Double Cropping System <i>Frontiers in Plant Science</i> , 2021 , 12, 809558	6.2	O
42	The Effect of Cluster Position Determined by Vineyard Row Orientation on Grape Flavonoids and Aroma Profiles of Vitis vinifera L. cv. Cabernet Sauvignon and Italian Riesling in the North Foot of Tianshan Mountains. <i>South African Journal of Enology and Viticulture</i> , 2021 , 42,	3.1	2
41	Influence of cluster positions in the canopy and row orientation on the flavonoid and volatile compound profiles in Vitis vinifera L. Cabernet franc and Chardonnay berries. <i>Food Research International</i> , 2021 , 143, 110306	7	1
40	Effects of sunlight exclusion on leaf gas exchange, berry composition, and wine flavour profile of Cabernet-Sauvignon from the foot of the north side of Mount Tianshan and a semi-arid continental climate. <i>Oeno One</i> , 2021 , 55, 267-283	3.3	2
39	Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins. <i>Drying Technology</i> , 2021 , 39, 495-506	2.6	21
38	Microcliamte changes caused by black inter-row mulch decrease flavonoids concentrations in grapes and wines under semi-arid climate. <i>Food Chemistry</i> , 2021 , 361, 130064	8.5	2
37	The influence of rootstocks on the scions@romatic profiles of Vitis vinifera L. cv. Chardonnay. <i>Scientia Horticulturae</i> , 2020 , 272, 109517	4.1	3
36	Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. <i>BMC Plant Biology</i> , 2020 , 20, 59	5.3	11
35	Effects of gibberellic acid (GA) application before anthesis on rachis elongation and berry quality and aroma and flavour compounds in Vitis vinifera L. 'Cabernet Franc' and 'Cabernet Sauvignon' grapes. <i>Journal of the Science of Food and Agriculture</i> , 2020 , 100, 3729-3740	4.3	3
34	The Effect of Light Intensity on the Expression of in Grapevine Calluses and Analysis of Its Promoter Activity. <i>Genes</i> , 2020 , 11,	4.2	2
33	Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. <i>Food Research International</i> , 2020 , 137, 109688	7	6
32	Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. <i>Frontiers in Plant Science</i> , 2020 , 11, 613677	6.2	7
31	Influence of the harvest date on berry compositions and wine profiles of Vitis vinifera L. cv. 'Cabernet Sauvignon' under a semiarid continental climate over two consecutive years. <i>Food Chemistry</i> , 2019 , 292, 237-246	8.5	3
30	Changes in global aroma profiles of Cabernet Sauvignon in response to cluster thinning. <i>Food Research International</i> , 2019 , 122, 56-65	7	11
29	Rootstock-Mediated Effects on Cabernet Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic Profiles. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	13

(2014-2019)

28	Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. <i>BMC Plant Biology</i> , 2019 , 19, 583	5.3	15
27	Flavonoid and aromatic profiles of two Vitis vinifera L. teinturier grape cultivars. <i>Australian Journal of Grape and Wine Research</i> , 2018 , 24, 379-389	2.4	8
26	Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. <i>Food Chemistry</i> , 2018 , 248, 101-110	8.5	25
25	Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis. <i>Molecules</i> , 2018 , 23,	4.8	10
24	Comparison of transcriptional expression patterns of carotenoid metabolism in 'Cabernet Sauvignon' grapes from two regions with distinct climate. <i>Journal of Plant Physiology</i> , 2017 , 213, 75-86	3.6	19
23	Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method. <i>Food Chemistry</i> , 2017 , 228, 125-135	8.5	36
22	Comparison of phenolic and chromatic characteristics of dry red wines made from native Chinese grape species and vitis vinifera. <i>International Journal of Food Properties</i> , 2017 , 20, 2134-2146	3	24
21	Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. <i>Frontiers in Plant Science</i> , 2017 , 8, 547	6.2	58
20	Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System. <i>Frontiers in Plant Science</i> , 2017 , 8, 1912	6.2	19
19	Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis. <i>Journal of Forestry Research</i> , 2016 , 27, 647-657	2	10
18	Optimization of Sample Preparation and Phloroglucinol Analysis of Marselan Grape Skin Proanthocyanidins using HPLC-DADESI- MS/MS. <i>South African Journal of Enology and Viticulture</i> , 2016 , 33,	3.1	5
17	Rain-Shelter Cultivation Modifies Carbon Allocation in the Polyphenolic and Volatile Metabolism of Vitis vinifera L. Chardonnay Grapes. <i>PLoS ONE</i> , 2016 , 11, e0156117	3.7	16
16	Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis. <i>Phytochemistry</i> , 2015 , 117, 363-372	4	10
15	Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. <i>Food Chemistry</i> , 2015 , 181, 198-206	8.5	43
14	Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate. <i>Journal of Plant Physiology</i> , 2015 , 178, 43-54	3.6	24
13	The free and enzyme-released volatile compounds of distinctive Vitis amurensis var. Zuoshanyi grapes in China. <i>European Food Research and Technology</i> , 2015 , 240, 985-997	3.4	11
12	Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter. <i>Plant Physiology and Biochemistry</i> , 2015 , 97, 70-81	5.4	25
11	Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chemistry, 2014 , 152, 29-36	8.5	97

10	Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east and west China. <i>Plant Physiology and Biochemistry</i> , 2014 , 84, 45-56	5.4	19
9	Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. <i>Molecules</i> , 2014 , 19, 13683-703	4.8	57
8	Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 6016-27	5.7	33
7	Evolution of flavonols in berry skins of different grape cultivars during ripening and a comparison of two vintages. <i>European Food Research and Technology</i> , 2012 , 235, 1187-1197	3.4	18
6	Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. <i>Molecules</i> , 2012 , 17, 1571-601	4.8	217
5	Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 2212-28	6.3	70
4	Biosynthesis of anthocyanins and their regulation in colored grapes. <i>Molecules</i> , 2010 , 15, 9057-91	4.8	310
3	SOAP2: an improved ultrafast tool for short read alignment. <i>Bioinformatics</i> , 2009 , 25, 1966-7	7.2	2784
2	WEGO: a web tool for plotting GO annotations. <i>Nucleic Acids Research</i> , 2006 , 34, W293-7	20.1	2180
1	Differential influence of timing and duration of bunch bagging on volatile organic compounds in Cabernet Sauvignon berries (Vitis vinifera L.). Australian Journal of Grape and Wine Research,	2.4	2