Jaime Iranzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4568549/publications.pdf Version: 2024-02-01

LAIME DANZO

#	Article	IF	CITATIONS
1	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	28.6	1,427
2	Origins and Evolution of the Global RNA Virome. MBio, 2018, 9, .	4.1	383
3	Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Research, 2018, 244, 181-193.	2.2	175
4	The enigmatic archaeal virosphere. Nature Reviews Microbiology, 2017, 15, 724-739.	28.6	169
5	The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. MBio, 2016, 7, .	4.1	151
6	Cancer-mutation network and the number and specificity of driver mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6010-E6019.	7.1	91
7	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844.	2.2	87
8	Inevitability of Genetic Parasites. Genome Biology and Evolution, 2016, 8, 2856-2869.	2.5	85
9	Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. Journal of Virology, 2016, 90, 11043-11055.	3.4	84
10	Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nature Communications, 2019, 10, 5376.	12.8	71
11	The Ultimatum Game in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P09012.	2.3	61
12	Empathy Emerges Spontaneously in the Ultimatum Game: Small Groups and Networks. PLoS ONE, 2012, 7, e43781.	2.5	59
13	Myosin-driven transport network in plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1385-E1394.	7.1	59
14	Evolutionary dynamics of genome segmentation in multipartite viruses. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3812-3819.	2.6	54
15	The spatial Ultimatum game revisited. Journal of Theoretical Biology, 2011, 278, 1-10.	1.7	51
16	The impact of quasispecies dynamics on the use of therapeutics. Trends in Microbiology, 2012, 20, 595-603.	7.7	48
17	A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged1 as a Therapeutic Target for Autoimmune Diseases. PLoS ONE, 2007, 2, e1222.	2.5	44
18	Virus-host arms race at the joint origin of multicellularity and programmed cell death. Cell Cycle, 2014, 13, 3083-3088.	2.6	44

JAIME IRANZO

#	Article	IF	CITATIONS
19	Disentangling the effects of selection and loss bias on gene dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5616-E5624.	7.1	44
20	Tempo and mode of inhibitor–mutagen antiviral therapies: A multidisciplinary approach. Proceedings of the United States of America, 2011, 108, 16008-16013.	7.1	38
21	Two RNase H2 Mutants with Differential rNMP Processing Activity Reveal a Threshold of Ribonucleotide Tolerance for Embryonic Development. Cell Reports, 2018, 25, 1135-1145.e5.	6.4	38
22	Stochastic extinction of viral infectivity through the action of defectors. Europhysics Letters, 2009, 85, 18001.	2.0	34
23	Large-Scale Genomic Analysis Suggests a Neutral Punctuated Dynamics of Transposable Elements in Bacterial Genomes. PLoS Computational Biology, 2014, 10, e1003680.	3.2	32
24	Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evolutionary Biology, 2015, 15, 43.	3.2	29
25	A network perspective on the virus world. Communicative and Integrative Biology, 2017, 10, e1296614.	1.4	29
26	Genomes of the " <i>Candidatus</i> Actinomarinales―Order: Highly Streamlined Marine Epipelagic Actinobacteria. MSystems, 2020, 5, .	3.8	24
27	Competition among networks highlights the power of the weak. Nature Communications, 2016, 7, 13273.	12.8	18
28	Reply to Holmes and Duchêne, "Can Sequence Phylogenies Safely Infer the Origin of the Global Virome?â€: Deep Phylogenetic Analysis of RNA Viruses Is Highly Challenging but Not Meaningless. MBio, 2019, 10, .	4.1	18
29	UG/Abi: a highly diverse family of prokaryotic reverse transcriptases associated with defense functions. Nucleic Acids Research, 2022, 50, 6084-6101.	14.5	11
30	Autoimmunity and tumor immunology: two facets of a probabilistic immune system. BMC Systems Biology, 2014, 8, 120.	3.0	9
31	High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase. Nucleic Acids Research, 2020, 48, 4274-4297.	14.5	8
32	How genetic parasites persist despite the purge of natural selection. Europhysics Letters, 2018, 122, 58001.	2.0	7
33	Game-Theoretical Modeling of Interviral Conflicts Mediated by Mini-CRISPR Arrays. Frontiers in Microbiology, 2020, 11, 381.	3.5	6
34	Five Challenges in the Field of Viral Diversity and Evolution. Frontiers in Virology, 2021, 1, .	1.4	6
35	Emergence of complex socioeconomic networks driven by individual and collective interests. Physical Review Research, 2020, 2, .	3.6	3