
Oleg V Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4568323/publications.pdf Version: 2024-02-01

OLEC VIEWIN

#	Article	IF	CITATIONS
1	Variable-resistance materials for lithium-ion batteries. Russian Chemical Reviews, 2022, 91, .	6.5	8
2	Nickel Salicylideniminato 1D MOFs <i>via</i> Electrochemical Polymerization. ChemElectroChem, 2022, 9, .	3.4	4
3	The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules, 2022, 27, 2250.	3.8	1
4	Key Features of TEMPO-Containing Polymers for Energy Storage and Catalytic Systems. Energies, 2022, 15, 2699.	3.1	8
5	New Variant of Electrochemical Intercalation Isotherm: Analysis of Instability Region Dependence on Electrolyte Concentration. Journal of Physical Chemistry C, 2022, 126, 8839-8854.	3.1	3
6	Zinc-assisted MgO template synthesis of porous carbon-supported Fe-Nx sites for efficient oxygen reduction reaction catalysis in Zn-air batteries. Applied Catalysis B: Environmental, 2022, 313, 121454.	20.2	62
7	Optimization of Sulfonated Polycatechol:PEDOT Energy Storage Performance by the Morphology Control. Nanomaterials, 2022, 12, 1917.	4.1	2
8	The Valence Band Structure of the [Ni(Salen)] Complex: An Ultraviolet, Soft X-ray and Resonant Photoemission Spectroscopy Study. International Journal of Molecular Sciences, 2022, 23, 6207.	4.1	3
9	Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy. Energy and Environmental Science, 2022, 15, 3275-3290.	30.8	20
10	Tuning cationic transport in Nisalen polymers via pseudo-crown functionality. Electrochimica Acta, 2022, 425, 140750.	5.2	3
11	The Fast and the Capacious: A [Ni(Salen)]â€₹EMPO Redoxâ€Conducting Polymer for Organic Batteries. Batteries and Supercaps, 2021, 4, 336-346.	4.7	21
12	Electrochemical synthesis and characterization of poly [Ni(CH3Osalen)] with immobilized poly(styrenesulfonate) anion dopants. Electrochimica Acta, 2021, 368, 137637.	5.2	8
13	Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies. Physical Chemistry Chemical Physics, 2021, 23, 11015-11027.	2.8	7
14	Non-sterical stabilization of one-electron-oxidized NiSalen complex by thiophene core. New Journal of Chemistry, 2021, 45, 14425-14431.	2.8	0
15	Assembly of [Ni(Schiff)] Films on an Inert Surface: A Multiscale Computational Study. Journal of Physical Chemistry C, 2021, 125, 2926-2937.	3.1	4
16	Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection. Journal of Power Sources, 2021, 490, 229548.	7.8	22
17	Sulfonated Polycatechol Immobilized in a Conductive Polymer for Enhanced Energy Storage. ACS Applied Energy Materials, 2021, 4, 5070-5078.	5.1	11
18	Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants. Catalysts, 2021, 11, 729.	3.5	6

#	Article	IF	CITATIONS
19	Low-temperature energy storage performance of NiSalen type polymer and it's composite with SWCNT. Electrochimica Acta, 2021, 383, 138309.	5.2	7

21	2-Hydroxy-3-octyloxybenzaldehyde. MolBank, 2021, 2021, M1264.	0.5	0
22	N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn-air batteries. Applied Surface Science, 2021, 562, 150114.	6.1	26
23	Modeling of the overcharge behavior of lithium-ion battery cells protected by a voltage-switchable resistive polymer layer. Journal of Power Sources, 2021, 510, 230392.	7.8	8
24	Halogen Bonding Involving Palladium(II) as an XB Acceptor. Crystal Growth and Design, 2021, 21, 1159-1177.	3.0	25
25	A Polymer Layer of Switchable Resistance for the Overcharge Protection of Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2021, 57, 1028-1036.	0.9	4
26	Mutually Isomeric 2- and 4-(3-Nitro-1,2,4-triazol-1-yl)pyrimidines Inspired by an Antimycobacterial Screening Hit: Synthesis and Biological Activity against the ESKAPE Panel of Pathogens. Antibiotics, 2020, 9, 666.	3.7	5
27	Targeted Synthesis of NIR Luminescent Rhenium Diimine <i>cis,trans</i> â€{Re()(CO) ₂ (L) ₂] ⁿ⁺ Complexes Containing <i>N</i> â€Donor Axial Ligands: Photophysical, Electrochemical, and Theoretical Studies. ChemPlusChem. 2020. 85. 2518-2527.	2.8	8
28	Switching Competition between Electron and Energy Transfers in Porphyrin–Fullerene Dyads. Journal of Physical Chemistry B, 2020, 124, 10899-10912.	2.6	11
29	6,6′-{[Ethane-1,2-diylbis(azaneylylidene)]bis(methaneylylidene)}bis[2-(hexyloxy)phenolato] Nickel(II). MolBank, 2020, 2020, M1174.	0.5	0
30	Resistivity-Temperature Behavior of Intrinsically Conducting Bis(3-methoxysalicylideniminato)nickel Polymer. Polymers, 2020, 12, 2925.	4.5	4
31	Nickel Salicylaldoxime-Based Coordination Polymer as a Cathode for Lithium-Ion Batteries. Energies, 2020, 13, 2480.	3.1	3
32	Capping agents as a novel approach to control VO2 nanoparticles morphology in hydrothermal process: Mechanism of morphology control and influence on functional properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 255, 114519.	3.5	3
33	Supramolecular Assembly of Metal Complexes by (Aryl)lâ‹â‹â‹d[Pt ^{II}] Halogen Bonds. Chemistry A European Journal, 2020, 26, 7692-7701.	3.3	54
34	Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for Fuel Cells Cathode Materials. Catalysts, 2020, 10, 667.	3.5	13
35	The (Dioximate)Ni ^{II} /I ₂ System: Ligand Oxidation and Binding Modes of Triiodide Species. Inorganic Chemistry, 2020, 59, 2316-2327.	4.0	13
36	Redox-conducting polymers based on metal- <i>salen</i> complexes for energy storage applications. Pure and Applied Chemistry, 2020, 92, 1239-1258.	1.9	32

OLEG V LEVIN

#	Article	IF	CITATIONS
37	Arylâ€Aryl Coupling of Salicylic Aldehydes through Oxidative CHâ€activation in Nickel Salen Derivatives. ChemistrySelect, 2019, 4, 8886-8890.	1.5	12
38	Synthesis and electrochemical properties of poly(3,4-dihydroxystyrene) and its composites with conducting polymers. Synthetic Metals, 2019, 256, 116151.	3.9	8
39	New Bis(salicylideneiminate) Nickel(II) Complexes with Carboxyethylene Linker Connecting Imine Groups and Their Electrochemical Polymerization. Russian Journal of General Chemistry, 2019, 89, 852-855.	0.8	4
40	Polymer composites containing dispersed VO2 of various polymorphs: Effects of polymer matrix on functional properties. Materials Chemistry and Physics, 2019, 235, 121752.	4.0	4
41	Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media. Photochemical and Photobiological Sciences, 2019, 18, 1982-1989.	2.9	5
42	The Effect of Electrode Potential on the Conductivity of Polymer Complexes of Nickel with Salen Ligands. Russian Journal of Electrochemistry, 2019, 55, 339-345.	0.9	21
43	Photogalvanic eff ect in porphyrin-pyrrolo[3′,4′:1,9]-(C60-Ih)[5,6]fullerene-2′,5′-dicarboxylate system Russian Chemical Bulletin, 2019, 68, 825-831.	^{5.} 1.5	2
44	Dual-nitrogen-source engineered Fe–N _x moieties as a booster for oxygen electroreduction. Journal of Materials Chemistry A, 2019, 7, 11007-11015.	10.3	62
45	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	9.0	71
46	Overcharge Cycling Effect on the Surface Layers and Crystalline Structure of LiFePO4 Cathodes of Li-lon Batteries. Energies, 2019, 12, 4652.	3.1	13
47	Mixed Platinum–Nickel Catalysts of Oxygen Reduction. Russian Journal of Electrochemistry, 2019, 55, 1092-1097.	0.9	4
48	Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices. Electrochimica Acta, 2019, 295, 1075-1084.	5.2	19
49	Fabrication of composite nanoparticles based on VO2 with given structure and its optical and electrochemical performance. Journal of Physics and Chemistry of Solids, 2018, 121, 128-138.	4.0	6
50	Effect of Structure of Polymeric Nickel Complexes with Salen-Type Ligands on the Rate of Their Electroactivity Decay in Solutions of Water-Containing Electrolytes. Russian Journal of General Chemistry, 2018, 88, 277-283.	0.8	6
51	Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes. Electrochimica Acta, 2018, 271, 190-202.	5.2	18
52	Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases. Russian Journal of Electrochemistry, 2018, 54, 769-774.	0.9	5
53	Dependence of Stability of the Polymerizesd Nickel Complexes with Schiff Bases on the Structure of the Ligand Diimine Bridge. ECS Transactions, 2018, 87, 167-177.	0.5	5
54	Highly Dispersed Cuâ^'N _X Moieties Embedded in Graphene: A Promising Electrocatalyst towards the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3323-3329.	3.4	30

OLEG V LEVIN

#	Article	IF	CITATIONS
55	Polymeric Metal Salenâ€Type Complexes as Catalysts for Photoelectrocatalytic Hydrogen Peroxide Production. ChemElectroChem, 2018, 5, 3138-3142.	3.4	24
56	Double Layer Structural Effects in Cyclic Voltammetry Curves Complicated with Non-Equilibrium Injection of Charge Carriers into Redox Polymer Films. Electrochimica Acta, 2017, 241, 375-385.	5.2	6
57	Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties. Electrochimica Acta, 2017, 225, 378-391.	5.2	58
58	Nickelâ€Salen Type Polymers as Cathode Materials for Rechargeable Lithium Batteries. Macromolecular Chemistry and Physics, 2017, 218, 1700361.	2.2	25
59	Water-stable [Ni(salen)]-type electrode material based on phenylazosubstituted salicylic aldehyde imine ligand. New Journal of Chemistry, 2017, 41, 13918-13928.	2.8	16
60	Microwave assisted polyol synthesis of CuGaSe2 nanoparticles for solar cell application. Functional Materials Letters, 2017, 10, 1750050.	1.2	3
61	Macromol. Chem. Phys. 24/2017. Macromolecular Chemistry and Physics, 2017, 218, 1770079.	2.2	0
62	Photocurrent in Multilayered Assemblies of Porphyrin–Fullerene Covalent Dyads: Evidence for Channels for Charge Transport. ChemSusChem, 2016, 9, 676-686.	6.8	14
63	Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases. Russian Journal of Electrochemistry, 2016, 52, 1183-1190.	0.9	12
64	Interaction of amines with electrodes modified by polymeric complexes of Ni with salen-type ligands. Electrochimica Acta, 2016, 211, 726-734.	5.2	15
65	Quasi-equilibrium voltammetric curves of polaron-conducting polymer films. Electrochimica Acta, 2016, 188, 480-489.	5.2	8
66	New functional materials based on conductive polymer—metal complexes modified with metallic nanoelectrodes. Russian Chemical Bulletin, 2015, 64, 1919-1925.	1.5	5
67	Hydrogen evolution reactions on carbon materials potentially useful in double-layer supercapacitors. Russian Journal of General Chemistry, 2015, 85, 2699-2702.	0.8	1
68	Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries. Russian Journal of Applied Chemistry, 2015, 88, 1146-1149.	0.5	24
69	New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Materials Letters, 2015, 161, 117-119.	2.6	27
70	Direct synthesis of Ni2Al(OH)7â^'x(NO3)x•nH2O layered double hydroxide nanolayers by SILD and their capacitive performance. Materials Letters, 2015, 139, 4-6.	2.6	12
71	Synthesis of New Porphyrin–Fullerene Dyads Capable of Forming Charge‧eparated States on a Microsecond Lifetime Scale. Chemistry - A European Journal, 2015, 21, 1237-1250.	3.3	20
72	Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study. Journal of Solid State Electrochemistry, 2015, 19, 453-468.	2.5	36

OLEG V LEVIN

#	Article	IF	CITATIONS
73	The Implication of 1,3â€Dipolar Cycloaddition of Azomethine Ylides to the Synthesis of Mainâ€Chain Porphyrin Oligomers. Macromolecular Chemistry and Physics, 2014, 215, 516-529.	2.2	4
74	Voltammetry of electrodes modified with pristine and composite polymer films; theoretical and experimental aspects. Electrochimica Acta, 2014, 122, 234-246.	5.2	4
75	Solid Energy: a Report on the 18th International Symposium on the Reactivity of Solids. Powder Diffraction, 2014, 29, 404-406.	0.2	Ο
76	Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films. Electrochimica Acta, 2013, 108, 313-320.	5.2	13
77	Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochimica Acta, 2013, 109, 153-161.	5.2	29
78	Criteria of the absence of short-range interactions within electroactive polymer films. Electrochimica Acta, 2012, 80, 426-431.	5.2	9
79	Electrical currents resulting from reduction/oxidation processes of tested particles on "inner―and "outer―surfaces of electroactive polymer films. Russian Journal of Electrochemistry, 2012, 48, 375-387.	0.9	1
80	Electrical currents resulting from reduction/oxidation processes of tested particles on electrodes modified with metal-containing polymer films. Electrochimica Acta, 2011, 56, 3586-3596.	5.2	7
81	Mixed solutions of silver cation and chloride anion in acetonitrile: Voltammetric and EQCM study. Physical Chemistry Chemical Physics, 2010, 12, 10525.	2.8	16
82	Limiting current to a rotating disk electrode modified with an electroactive polymeric film in the presence of a redox pair in the adjacent solution volume. Russian Journal of Electrochemistry, 2008, 44, 91-97.	0.9	3
83	Using the rotating disk electrode for evaluating film porosity of conductive polymers. Russian Journal of Electrochemistry, 2008, 44, 98-103.	0.9	5
84	Effect of interparticle interactions on the rate of injection of charge carriers into electroactive polymer films. Russian Journal of Electrochemistry, 2007, 43, 1016-1025.	0.9	5
85	Model treatment of double layer charging in electroactive polymer films with two kinds of charge carriers. Electrochimica Acta, 2006, 52, 133-151.	5.2	13
86	Charge transfer processes at poly-o-phenylenediamine and poly-o-aminophenol films. Electrochimica Acta, 2005, 50, 1573-1585.	5.2	55
87	Electrochemical Properties of Poly-o-Phenylenediamine Films in Solutions with Variable Concentration of Hydronium Ions. Russian Journal of Electrochemistry, 2004, 40, 91-98.	0.9	5
88	Cyclic Voltammetry and the Impedance of Electrodes Modified by Indium(III) Hexacyanoferrate Films. Russian Journal of Electrochemistry, 2002, 38, 1192-1199.	0.9	2