Mohsen Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4567292/publications.pdf

Version: 2024-02-01

623734 552781 31 787 14 26 citations g-index h-index papers 31 31 31 1154 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genetic Trends in Fusarium Head Blight Resistance from 20 Years of Winter Wheat Breeding and Cooperative Testing in the Northern U.S.A Plant Disease, 2022, 106, 364-372.	1.4	6
2	Multiâ€trait genomic selection can increase selection accuracy for deoxynivalenol accumulation resulting from fusarium head blight in wheat. Plant Genome, 2022, 15, e20188.	2.8	20
3	Genome-Wide Association Studies for Fusarium Head Blight Resistance and Its Trade-Off With Grain Yield in Soft Red Winter Wheat. Plant Disease, 2021, 105, 2435-2444.	1.4	14
4	Using Genomic Selection to Leverage Resources among Breeding Programs: Consortium-Based Breeding. Agronomy, 2021, 11, 1555.	3.0	6
5	Incorporating Multi-Scale, Spectrally Detected Nitrogen Concentrations into Assessing Nitrogen Use Efficiency for Winter Wheat Breeding Populations. Remote Sensing, 2021, 13, 3991.	4.0	4
6	Genome-wide association study in historical and contemporary U.S. winter wheats identifies height-reducing loci. Crop Journal, 2020, 8, 243-251.	5.2	8
7	High-throughput phenotyping identifies plant growth differences under well-watered and drought treatments. Journal of Integrative Agriculture, 2020, 19, 2429-2438.	3.5	10
8	A proteomic analysis of grain yield-related traits in wheat. AoB PLANTS, 2020, 12, plaa042.	2.3	14
9	Growth Analysis of Wheat Using Machine Vision: Opportunities and Challenges. Sensors, 2020, 20, 6501.	3.8	6
10	Application of Artificial Neural Network for Modeling and Studying In Vitro Genotype-Independent Shoot Regeneration in Wheat. Applied Sciences (Switzerland), 2020, 10, 5370.	2.5	39
11	Identification, deployment, and transferability of quantitative trait loci from genome-wide association studies in plants. Current Plant Biology, 2020, 24, 100145.	4.7	20
12	Registration of durum wheat (Triticum turgidum ssp. durum) sources of resistance to Hessian fly. Journal of Plant Registrations, 2020, 14, 445-449.	0.5	O
13	Identification of regions under selection and loci controlling agronomic traits in a soft red winter wheat population. Plant Genome, 2020, 13, e20031.	2.8	12
14	Variation in Root and Shoot Growth in Response to Reduced Nitrogen. Plants, 2020, 9, 144.	3.5	15
15	Cultivar, Trait and Management System Selection to Improve Soft-Red Winter Wheat Productivity in the Eastern United States. Frontiers in Plant Science, 2020, 11, 335.	3.6	6
16	Reimagining Maize Inbred Potential: Identifying Breeding Crosses Using Genetic Variance of Simulated Progeny. Crop Science, 2019, 59, 1457-1468.	1.8	6
17	Association Analysis of Baking and Milling Quality Traits in an Elite Soft Red Winter Wheat Population. Crop Science, 2019, 59, 1085-1094.	1.8	9
18	Registration of the S2MET Barley Mapping Population for Multiâ€Environment Genomewide Selection. Journal of Plant Registrations, 2019, 13, 270-280.	0.5	11

#	Article	IF	CITATIONS
19	Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Functional and Integrative Genomics, 2019, 19, 91-107.	3.5	69
20	Association and genome analyses to propose putative candidate genes for malt quality traits. Journal of the Science of Food and Agriculture, 2019, 99, 2775-2785.	3.5	8
21	Genome-wide Association Studies and Candidate Gene Identification for Leaf Scald and Net Blotch in Barley (<i>Hordeum vulgare</i> L.). Plant Disease, 2019, 103, 880-889.	1.4	25
22	Phylogenetic analyses and in-seedling expression of ammonium and nitrate transporters in wheat. Scientific Reports, 2018, 8, 7082.	3.3	26
23	Genome-Wide Association Studies to Identify Loci and Candidate Genes Controlling Kernel Weight and Length in a Historical United States Wheat Population. Frontiers in Plant Science, 2018, 9, 1045.	3.6	39
24	The Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations. G3: Genes, Genomes, Genetics, 2016, 6, 609-622.	1.8	21
25	The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 2307-2317.	8.9	83
26	Effectiveness of Genes for Hessian Fly (Diptera: Cecidomyiidae) Resistance in the Southeastern United States. Journal of Economic Entomology, 2016, 109, 399-405.	1.8	19
27	PopVar: A Genomeâ€Wide Procedure for Predicting Genetic Variance and Correlated Response in Biparental Breeding Populations. Crop Science, 2015, 55, 2068-2077.	1.8	99
28	A genome-wide association study of malting quality across eight U.S. barley breeding programs. Theoretical and Applied Genetics, 2015, 128, 705-721.	3.6	67
29	Predicting genetic variance in bi-parental breeding populations is more accurate when explicitly modeling the segregation of informative genomewide markers. Molecular Breeding, 2015, 35, 1.	2.1	24
30	Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Molecular Breeding, 2014, 34, 1229-1243.	2.1	35
31	Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant, Cell and Environment, 2007, 30, 630-645.	5.7	66