Manoj-Kumar Arthikala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4567067/publications.pdf

Version: 2024-02-01

34 papers 1,131 citations

18 h-index 32 g-index

34 all docs

34 docs citations

times ranked

34

1274 citing authors

#	Article	IF	Citations
1	A protocol for the generation of Arachis hypogaea composite plants: A valuable tool for the functional study of mycorrhizal symbiosis. Applications in Plant Sciences, 2022, 10, e11454.	0.8	1
2	Cytoskeleton in abiotic stress signaling. , 2022, , 347-371.		1
3	Target of rapamycin, PvTOR, is a key regulator of arbuscule development during mycorrhizal symbiosis in Phaseolus. Scientific Reports, 2021, 11, 11319.	1.6	5
4	Endophytic Fungi Penicillium species BCt Phytochemicals Inhibit Replication of Enzymes of Human Immuno-deficiency Virus 1 in in vitro and in silico Studies. International Journal of Pharmaceutical Sciences and Nanotechnology, 2021, 14, 5624-5633.	0.0	0
5	Exploration of Autophagy Families in Legumes and Dissection of the ATG18 Family with a Special Focus on Phaseolus vulgaris. Plants, 2021, 10, 2619.	1.6	3
6	Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS ONE, 2019, 14, e0219765.	1.1	13
7	Cysteine-Rich Receptor-Like Kinase Gene Family Identification in the Phaseolus Genome and Comparative Analysis of Their Expression Profiles Specific to Mycorrhizal and Rhizobial Symbiosis. Genes, 2019, 10, 59.	1.0	30
8	Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results in Physics, 2018, 9, 400-408.	2.0	152
9	Plant-symbiont interactions: the functional role of expansins. Symbiosis, 2018, 74, 1-10.	1.2	17
10	$\mbox{\ensuremath{\mbox{\scriptsize ci}}}\mbox{\ensuremath{\mbox{\scriptsize RbohA}$\ensuremath{\mbox{\scriptsize /}$i>}}}$ coordinates lateral root emergence in common bean. Communicative and Integrative Biology, 2018, 11, 1-5.	0.6	8
11	Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environmental and Experimental Botany, 2018, 153, 108-119.	2.0	15
12	In BPS1 Downregulated Roots, the BYPASS1 Signal Disrupts the Induction of Cortical Cell Divisions in Bean-Rhizobium Symbiosis. Genes, 2018, 9, 11.	1.0	13
13	Plant Promoter Analysis: Identification and Characterization of Root Nodule Specific Promoter in the Common Bean. Journal of Visualized Experiments, 2017, , .	0.2	8
14	Respiratory Burst Oxidase Homolog Gene A Is Crucial for Rhizobium Infection and Nodule Maturation and Function in Common Bean. Frontiers in Plant Science, 2017, 8, 2003.	1.7	63
15	Differentially expressed genes in mycorrhized and nodulated roots of common bean are associated with defense, cell wall architecture, N metabolism, and P metabolism. PLoS ONE, 2017, 12, e0182328.	1.1	29
16	Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation. International Journal of Molecular Sciences, 2016, 17, 680.	1.8	62
17	Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Reports, 2016, 35, 1189-1203.	2.8	25
18	An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between <i>Phaseolus vulgaris</i> and Both Rhizobia and Arbuscular Mycorrhizal Fungi. Plant Cell, 2016, 28, 2326-2341.	3.1	37

#	Article	IF	CITATIONS
19	A Legume TOR Protein Kinase Regulates <i>Rhizobium</i> Symbiosis and Is Essential for Infection and Nodule Development. Plant Physiology, 2016, 172, 2002-2020.	2.3	29
20	Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnology, 2016, 16, 53.	1.7	74
21	Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB. Plant Signaling and Behavior, 2015, 10, e1011932.	1.2	3
22	Overexpression of a Pea DNA Helicase (PDH45) in Peanut (Arachis hypogaea L.) Confers Improvement of Cellular Level Tolerance and Productivity Under Drought Stress. Molecular Biotechnology, 2014, 56, 111-125.	1.3	41
23	Utility of a tissue culture-independent Agrobacterium-mediated in planta transformation strategy in bell pepper to develop fungal disease resistant plants. Scientia Horticulturae, 2014, 170, 61-69.	1.7	10
24	<i>RbohB</i> , a <iphaseolus <="" i="" vulgaris=""> <scp>NADPH</scp> oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytologist, 2014, 202, 886-900.</iphaseolus>	3.5	101
25	Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (<i>Phaseolus vulgaris</i> L.). Journal of Integrative Plant Biology, 2014, 56, 281-298.	4.1	30
26	<i>>i>Phaseolus vulgaris</i> RbohBfunctions in lateral root development. Plant Signaling and Behavior, 2013, 8, e22694.	1.2	37
27	PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant and Cell Physiology, 2013, 54, 1391-1402.	1.5	34
28	A Phaseolus vulgaris NADPH Oxidase Gene is Required for Root Infection by Rhizobia. Plant and Cell Physiology, 2012, 53, 1751-1767.	1.5	105
29	Agrobacterium-Mediated In Planta Transformation of Field Bean (Lablab purpureus L.) and Recovery of Stable Transgenic Plants Expressing the cry1AcF Gene. Plant Molecular Biology Reporter, 2012, 30, 67-78.	1.0	23
30	A rapid, novel and high-throughput identification of putative bell pepper transformants generated through in planta transformation approach. Scientia Horticulturae, 2011, 129, 898-903.	1.7	11
31			

3