Nicolas P Blondeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/456681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO Journal, 2004, 23, 2684-2695.	7.8	480
2	Polyunsaturated fatty acids are potent neuroprotectors. EMBO Journal, 2000, 19, 1784-1793.	7.8	423
3	TREK-1, a K+ channel involved in polymodal pain perception. EMBO Journal, 2006, 25, 2368-2376.	7.8	363
4	Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nature Neuroscience, 2006, 9, 1134-1141.	14.8	338
5	The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 2010, 224, 93-100.	2.3	326
6	Activation of the Nuclear Factor-κB Is a Key Event in Brain Tolerance. Journal of Neuroscience, 2001, 21, 4668-4677.	3.6	258
7	A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nature Neuroscience, 2007, 10, 943-945.	14.8	246
8	Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience, 2002, 109, 231-241.	2.3	154
9	Alpha-Linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience, 2006, 137, 241-251.	2.3	128
10	Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News and Perspectives, 2004, 17, 365.	1.5	128
11	Mutually Protective Actions of Kainic Acid Epileptic Preconditioning and Sublethal Global Ischemia on Hippocampal Neuronal Death: Involvement of Adenosine A ₁ Receptors and K _{ATP} Channels. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1296-1308.	4.3	126
12	Subchronic Alpha-Linolenic Acid Treatment Enhances Brain Plasticity and Exerts an Antidepressant Effect: A Versatile Potential Therapy for Stroke. Neuropsychopharmacology, 2009, 34, 2548-2559.	5.4	119
13	Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties—Ready for Use in the Stroke Clinic?. BioMed Research International, 2015, 2015, 1-8.	1.9	116
14	Polyunsaturated Fatty Acids Are Cerebral Vasodilators via the TREK-1 Potassium Channel. Circulation Research, 2007, 101, 176-184.	4.5	112
15	KATP channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience, 2000, 100, 465-474.	2.3	110
16	Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. Journal of Vascular Surgery, 2003, 38, 564-575.	1.1	97
17	Distribution of sphingosine kinase activity and mRNA in rodent brain. Journal of Neurochemistry, 2007, 103, 509-517.	3.9	91
18	A Potent Protective Role of Lysophospholipids against Global Cerebral Ischemia and Glutamate Excitotoxicity in Neuronal Cultures. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 821-834.	4.3	89

NICOLAS P BLONDEAU

#	Article	IF	CITATIONS
19	The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Annals of the New York Academy of Sciences, 2015, 1351, 127-140.	3.8	83
20	Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacological Research, 2010, 61, 226-233.	7.1	82
21	Altered acetylcholine, bradykinin and cutaneous pressureâ€induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. EMBO Reports, 2007, 8, 354-359.	4.5	80
22	Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Frontiers in Endocrinology, 2017, 8, 197.	3.5	74
23	ATP-sensitive potassium channels (KATP) in retina: a key role for delayed ischemic tolerance. Brain Research, 2001, 890, 118-129.	2.2	72
24	Preconditioning and neurotrophins: a model for brain adaptation to seizures, ischemia and other stressful stimuli. Amino Acids, 2007, 32, 299-304.	2.7	70
25	Targeting eIF5A Hypusination Prevents Anoxic Cell Death through Mitochondrial Silencing and Improves Kidney Transplant Outcome. Journal of the American Society of Nephrology: JASN, 2017, 28, 811-822.	6.1	52
26	Alpha-linolenic acid: A promising nutraceutical for the prevention of stroke. PharmaNutrition, 2013, 1, 1-8.	1.7	50
27	The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie, 2016, 120, 49-55.	2.6	41
28	Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Reports, 2016, 17, 1738-1752.	4.5	40
29	Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Frontiers in Neuroscience, 2018, 12, 510.	2.8	40
30	Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacological Research, 2014, 87, 8-17.	7.1	36
31	Peroxisome Proliferator-activated Receptor Î ³ Induces Apoptosis and Inhibits Autophagy of Human Monocyte-derived Macrophages via Induction of Cathepsin L. Journal of Biological Chemistry, 2011, 286, 28858-28866.	3.4	35
32	Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic proteinâ€positive cells and microglia in male mice. Glia, 2021, 69, 42-60.	4.9	30
33	Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke. Neuropharmacology, 2016, 108, 60-72.	4.1	28
34	Sortilin in Glucose Homeostasis: From Accessory Protein to Key Player?. Frontiers in Pharmacology, 2018, 9, 1561.	3.5	23
35	Association of phenylbutazone usage with horses bought for slaughter: A public health risk. Food and Chemical Toxicology, 2010, 48, 1270-1274.	3.6	22
36	Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radical Biology and Medicine, 2021, 169, 258-270.	2.9	22

NICOLAS P BLONDEAU

#	Article	IF	CITATIONS
37	Inhibition of eIF5A hypusination reprogrammes metabolism and glucose handling in mouse kidney. Cell Death and Disease, 2021, 12, 283.	6.3	18
38	Brain Adaptation to Stressful Stimuli: A New Perspective on Potential Therapeutic Approaches Based on BDNF and NMDA Receptors. CNS and Neurological Disorders - Drug Targets, 2008, 7, 382-390.	1.4	17
39	Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. Journal of Ethnopharmacology, 2020, 263, 113147.	4.1	17
40	Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1080-1090.	4.3	17
41	Concomitant Transitory Up-Regulation of X-Linked Inhibitor of Apoptosis Protein (XIAP) and the Heterogeneous Nuclear Ribonucleoprotein C1–C2 in Surviving Cells During Neuronal Apoptosis. Neurochemical Research, 2008, 33, 1859-1868.	3.3	14
42	The eukaryotic initiation factor 5A (elF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell and Bioscience, 2021, 11, 219.	4.8	13
43	Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults. Neuropharmacology, 2016, 105, 533-542.	4.1	9
44	Cruise ship pathologies in remote regions. International Maritime Health, 2018, 69, 75-83.	0.7	9
45	Les acides gras essentiels deÂlaÂfamille desÂoméga-3 et laÂsanté deÂlaÂmère etÂdeÂl'enfant. Nutrition Clir Et Metabolisme, 2006, 20, 68-72.	nique 0.5	7
46	Sortilin-derived peptides promote pancreatic beta-cell survival through CREB signaling pathway. Pharmacological Research, 2021, 167, 105539.	7.1	7
47	Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals. Brain Circulation, 2017, 3, 78.	1.8	6
48	Linotrins: Omega-3 oxylipins featuring an E,Z,E conjugated triene motif are present in the plant kingdom and alleviate inflammation in LPS-challenged microglial cells. European Journal of Medicinal Chemistry, 2022, 231, 114157.	5.5	6
49	A New Future in Brain Preconditioning Based on Nutraceuticals: A Focus on α-Linolenic Omega-3 Fatty Acid for Stroke Protection. , 2013, , 133-163.		4
50	α-linolenic omega-3 fatty acid for stroke protection: from brain preconditioning paradigm to nutrition. Oleagineux Corps Gras Lipides, 2011, 18, 271-278.	0.2	2
51	Le rÃ1e majeur du canal potassique TREK-1 dans la protection neuronale induite par les oméga-3. Oleagineux Corps Gras Lipides, 2005, 12, 68-77.	0.2	1
52	Food and Chemical Toxicology, 2010, author response to letter by Don Henneke, Sheryl King, William Day and Pat Evans regarding Association of phenylbutazone usage in horses bought for slaughter: A public health risk. Food and Chemical Toxicology, 2012, 50, 455-456.	3.6	1
53	Bridging the Gap Between Diabetes and Stroke in Search of High Clinical Relevance Therapeutic Targets. NeuroMolecular Medicine, 2019, 21, 432-444.	3.4	1
54	Is the vascular TREK-1 potentially involved in PUFAS-induced neuronal activation. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S163-S163.	4.3	1

#	Article	IF	CITATIONS
55	Alpha-linolenic acid and riluzole, activators of 2 pore-domain K+ channels afford brain protection against focal brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S13-S13.	4.3	0
56	Nutraceuticals for stroke protection: A focus on a-linolenic omega-3 fatty acid. Frontiers in Human Neuroscience, 0, 7, .	2.0	0
57	An acute coronary syndrome in Antarctica. International Maritime Health, 2019, 70, 167-170.	0.7	0
58	Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals. Brain Circulation, 2017, 3, 78-86.	1.8	0