Santiago César GonzÃ;lez-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566433/publications.pdf

Version: 2024-02-01

137 papers

8,027 citations

44069 48 h-index 82 g-index

145 all docs 145
docs citations

145 times ranked 8369 citing authors

#	Article	IF	Citations
1	Environmental patterns of adaptation after range expansion in Leontodon longirostris : the effect of phenological events on fitnessâ€related traits. American Journal of Botany, 2022, , .	1.7	4
2	Polygenic adaptation and negative selection across traits, years and environments in a longâ€lived plant species (<i>Pinus pinaster</i> Ait., Pinaceae). Molecular Ecology, 2022, 31, 2089-2105.	3.9	21
3	Maritime Pine Genomics in Focus. Compendium of Plant Genomes, 2022, , 67-123.	0.5	4
4	Admixture and selection patterns across the European distribution of Scots pine, <i>Pinus sylvestris</i> (Pinaceae). Botanical Journal of the Linnean Society, 2022, 200, 416-432.	1.6	5
5	Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genetics and Genomes, 2022, 18, 1.	1.6	5
6	Combining Climatic and Genomic Data Improves Range-Wide Tree Height Growth Prediction in a Forest Tree. American Naturalist, 2022, 200, E141-E159.	2.1	8
7	Demography, genetic diversity and expansion load in the colonizing species <i>Leontodon longirostris</i> (Asteraceae) throughout its native range. Molecular Ecology, 2021, 30, 1190-1205.	3.9	10
8	The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience, 2021 , 10 , .	6.4	3
9	Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches. Plant Molecular Biology, 2021, 106, 367-380.	3.9	7
10	Population Genetics and Genomics of Aleppo Pine (Pinus halepensis). Managing Forest Ecosystems, 2021, , 19-32.	0.9	1
11	Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evolutionary Applications, 2021, 14, 2750-2772.	3.1	14
12	A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in Taxus baccata L. Evolutionary Applications, 2020, 13, 143-160.	3.1	22
13	The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Scientific Data, 2020, 7, 1.	5.3	830
14	Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Molecular Ecology, 2020, 29, 4797-4811.	3.9	15
15	The Tree Height Growth of Most Southern Scot Pine Populations Are Locally Adapted to Drought. Forests, 2019, 10, 555.	2.1	10
16	Looking for Local Adaptation: Convergent Microevolution in Aleppo Pine (Pinus halepensis). Genes, 2019, 10, 673.	2.4	16
17	Early Sex-Chromosome Evolution in the Diploid Dioecious Plant <i>Mercurialis annua</i> . Genetics, 2019, 212, 815-835.	2.9	53
18	A Reference Genome Sequence for the European Silver Fir (<i>Abies alba</i> Mill.): A Community-Generated Genomic Resource. G3: Genes, Genomes, Genetics, 2019, 9, 2039-2049.	1.8	53

#	Article	IF	Citations
19	Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. Journal of Ecology, 2019, 107, 1594-1605.	4.0	71
20	Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae). Annals of Forest Science, 2019, 76, 1.	2.0	13
21	Molecular and Quantitative Genetics of Stone Pine (Pinus pinea). Sustainable Development and Biodiversity, 2019, , 61-84.	1.7	13
22	Environmental effects on fineâ€scale spatial genetic structure in four Alpine keystone forest tree species. Molecular Ecology, 2018, 27, 647-658.	3.9	15
23	Phenological match drives pollenâ€mediated gene flow in a temporally dimorphic tree. Plant Biology, 2018, 20, 93-100.	3.8	10
24	Molecular signatures of divergence and selection in closely related pine taxa. Tree Genetics and Genomes, 2018, 14, 83.	1.6	15
25	Inferring selection in instances of longâ€range colonization: The Aleppo pine (<i>Pinus halepensis</i>) in the Mediterranean Basin. Molecular Ecology, 2018, 27, 3331-3345.	3.9	22
26	Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes. Genes, 2018, 9, 277.	2.4	23
27	De novo assembly of English yew (Taxus baccata) transcriptome and its applications for intra- and inter-specific analyses. Plant Molecular Biology, 2018, 97, 337-345.	3.9	8
28	Functional outcomes of fungal community shifts driven by tree genotype and spatialâ€ŧemporal factors in Mediterranean pine forests. Environmental Microbiology, 2017, 19, 1639-1652.	3.8	48
29	Climate and population origin shape pine tree height-diameter allometry. New Forests, 2017, 48, 363-379.	1.7	28
30	Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Molecular Ecology, 2017, 26, 706-717.	3.9	85
31	Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. Forest Ecology and Management, 2017, 405, 350-359.	3.2	28
32	Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Current Biology, 2017, 27, 2544-2551.e4.	3.9	75
33	High rate of adaptive evolution in two widespread European pines. Molecular Ecology, 2017, 26, 6857-6870.	3.9	27
34	Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. Annals of Botany, 2017, 119, 1061-1072.	2.9	27
35	Development of genomic tools in a widespread tropical tree, <i>Symphonia globulifera ⟨i⟩ L.f.: a new lowâ€coverage draft genome, <scp>SNP ⟨scp⟩ and <scp>SSR ⟨scp⟩ markers. Molecular Ecology Resources, 2017, 17, 614-630.</scp></scp></i>	4.8	9
36	Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS ONE, 2017, 12, e0182515.	2.5	23

#	Article	IF	CITATIONS
37	Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics. Forest Systems, 2017, 26, e07S.	0.3	11
38	Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species. Ecological Applications, 2016, 26, 2254-2266.	3.8	54
39	Highâ€density <scp>SNP</scp> assay development for genetic analysis in maritime pine (<i><scp>P</scp>inus pinaster</i>). Molecular Ecology Resources, 2016, 16, 574-587.	4.8	53
40	Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecology and Evolution, 2016, 6, 7561-7573.	1.9	40
41	Biogeography and evolution of seeder and resprouter forms of Erica coccinea (Ericaceae) in the fire-prone Cape fynbos. Plant Ecology, 2016, 217, 751-761.	1.6	7
42	Development and Characterization of Three Highly Informative EST-SSR Multiplexes for Pinus halepensis mill. and their Transferability to Other Mediterranean Pines. Plant Molecular Biology Reporter, 2016, 34, 993-1002.	1.8	10
43	Causes and consequences of large clonal assemblies in a poplar hybrid zone. Molecular Ecology, 2016, 25, 5330-5344.	3.9	7
44	Combining molecular and fossil data to infer demographic history of <i>Quercus cerris</i> : insights on European eastern glacial refugia. Journal of Biogeography, 2016, 43, 679-690.	3.0	69
45	Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?. Regional Environmental Change, 2016, 16, 927-939.	2.9	91
46	Fifty years of genetic studies: what to make of the large amounts of variation found within populations?. Annals of Forest Science, 2016, 73, 69-75.	2.0	35
47	Field heritability of a plant adaptation to fire in heterogeneous landscapes. Molecular Ecology, 2015, 24, 5633-5642.	3.9	39
48	Adapting through glacial cycles: insights from a longâ€lived tree (<i>Taxus baccata</i>). New Phytologist, 2015, 208, 973-986.	7. 3	63
49	Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (<i>Pinus pinaster</i> Aiton,) Tj ETQq1 1 0.7843	14 rgBT /(2.9	Overlock 10 78
50	Local effects drive heterozygosity–fitness correlations in an outcrossing long-lived tree. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152230.	2.6	19
51	Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species. Tree Genetics and Genomes, 2015 , 11 , 1 .	1.6	5
52	Nucleotide polymorphisms in a pine ortholog of the <i>Arabidopsis</i> degrading enzyme cellulase KORRIGAN are associated with early growth performance in <i>Pinus pinaster</i> . Tree Physiology, 2015, 35, 1000-1006.	3.1	13
53	Correlated genetic effects on reproduction define a domestication syndrome in a forest tree. Evolutionary Applications, 2015, 8, 403-410.	3.1	17
54	Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany, 2014, 114, 571-577.	2.9	45

#	Article	IF	CITATIONS
55	<i>InÂsitu</i> genetic association for serotiny, a fireâ€related trait, in Mediterranean maritime pine (<i>Pinus pinaster</i>). New Phytologist, 2014, 201, 230-241.	7.3	69
56	Environmental versus geographical determinants of genetic structure in two subalpine conifers. New Phytologist, 2014, 201, 180-192.	7.3	52
57	Environment-dependent microevolution in a Mediterranean pine (Pinus pinasterAiton). BMC Evolutionary Biology, 2014, 14, 200.	3.2	22
58	First insights into the transcriptome and development of new genomic tools of a widespread circumâ€Mediterranean tree species, <i>Pinus halepensis</i> Mill. Molecular Ecology Resources, 2014, 14, 846-856.	4.8	61
59	Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genetics and Genomes, 2014, 10, 15-26.	1.6	36
60	Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana. Heredity, 2014, 113, 401-407.	2.6	15
61	Detecting short spatial scale local adaptation and epistatic selection in climateâ€related candidate genes in <scp>E</scp> uropean beech (<i><scp>F</scp>agus sylvatica</i>) populations. Molecular Ecology, 2014, 23, 4696-4708.	3.9	61
62	Can facilitation influence the spatial genetics of the beneficiary plant population?. Journal of Ecology, 2014, 102, 1214-1221.	4.0	11
63	Can seed production and restricted dispersal limit recruitment in Pinus pinaster Aiton from the Spanish Northern Plateau?. Forest Ecology and Management, 2014, 313, 329-339.	3.2	24
64	The Role of Population Origin and Microenvironment in Seedling Emergence and Early Survival in Mediterranean Maritime Pine (Pinus pinaster Aiton). PLoS ONE, 2014, 9, e109132.	2.5	35
65	Adaptive evolution of Mediterranean pines. Molecular Phylogenetics and Evolution, 2013, 68, 555-566.	2.7	46
66	Extensive Clonal Assemblies in Populus alba and Populus x canescens from the Iberian Peninsula. Tree Genetics and Genomes, 2013, 9, 499-510.	1.6	12
67	Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations. Heredity, 2013, 111, 474-485.	2.6	35
68	Potential for evolutionary responses to climate change – evidence from tree populations. Global Change Biology, 2013, 19, 1645-1661.	9.5	705
69	The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa. Heredity, 2013, 111, 66-76.	2.6	38
70	Fire structures pine serotiny at different scales. American Journal of Botany, 2013, 100, 2349-2356.	1.7	89
71	Nuclear microsatellites for <i>Pinus pinea</i> (Pinaceae), a genetically depauperate tree, and their transferability to <ip. halepensis<="" i=""> American Journal of Botany, 2012, 99, e362-5.</ip.>	1.7	14
72	Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster. Annals of Botany, 2012, 110, 1449-1460.	2.9	58

#	Article	IF	CITATIONS
73	Extensive Pollen Flow but Few Pollen Donors and High Reproductive Variance in an Extremely Fragmented Landscape. PLoS ONE, 2012, 7, e49012.	2.5	21
74	Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands. Annals of Botany, 2012, 109, 429-441.	2.9	19
75	Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude. Annals of Forest Science, 2012, 69, 345-351.	2.0	22
76	Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L Conservation Genetics Resources, 2012, 4, 231-234.	0.8	31
77	Recent population decline and selection shape diversity of taxolâ€related genes. Molecular Ecology, 2012, 21, 3006-3021.	3.9	24
78	The Atlantic–Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars. Molecular Ecology, 2012, 21, 3593-3609.	3.9	21
79	Molecular Footprints of Local Adaptation in Two Mediterranean Conifers. Molecular Biology and Evolution, 2011, 28, 101-116.	8.9	172
80	Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species. Heredity, 2011, 107, 478-486.	2.6	29
81	Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 2011, 12, 368.	2.8	66
82	Isolation of SSR markers for two African tropical tree species, <i>Erythrophleum suaveolens</i> and <i>E. ivorense</i> (Caesalpinioideae). American Journal of Botany, 2011, 98, e106-8.	1.7	9
83	Growth and yield models in Spain: Historical overview, Contemporary Examples and perspectives. Forest Systems, 2011, 20, 315.	0.3	28
84	Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, <i>Taxus baccata</i> (Taxaceae), with great dispersal capability. American Journal of Botany, 2010, 97, 303-310.	1.7	94
85	The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evolutionary Biology, 2010, 10, 22.	3.2	53
86	Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: Past and present limits to gene movement over a broad geographic scale. Molecular Phylogenetics and Evolution, 2010, 55, 805-815.	2.7	67
87	Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Molecular Ecology, 2010, 19, 1396-1409.	3.9	67
88	Back to nature: ecological genomics of loblolly pine (<i>Pinus taeda</i> , Pinaceae). Molecular Ecology, 2010, 19, 3789-3805.	3.9	204
89	The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: a comparative phylogeographic survey. Molecular Ecology, 2010, 19, 5452-5468.	3.9	63

Geography determines genetic relationships between species of mountain pine (<i>Pinus mugo</i>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	Citations
91	Isolation of microsatellite markers for the common Mediterranean shrub <i>Myrtus communis</i> (Myrtaceae). American Journal of Botany, 2010, 97, e23-5.	1.7	15
92	Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (<i>Pinus taeda</i> L., Pinaceae). Genetics, 2010, 185, 969-982.	2.9	332
93	sofsog : a suite of programs to avoid inbreeding in plantation designs. Molecular Ecology Resources, 2010, 10, 393-396.	4.8	4
94	Conservation Genomics., 2010,, 349-368.		2
95	Evolution of Disease Response Genes in Loblolly Pine: Insights from Candidate Genes. PLoS ONE, 2010, 5, e14234.	2.5	23
96	Allocating individuals to avoid inbreeding in ex situ conservation plantations: so far, so good. Conservation Genetics, 2009, 10, 45-57.	1.5	8
97	Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genetics and Genomes, 2009, 5, 609-616.	1.6	30
98	Is <i>Cupressus sempervirens</i> native in Italy? An answer from genetic and palaeobotanical data. Molecular Ecology, 2009, 18, 2276-2286.	3.9	65
99	Spatial genetic structure in continuous and fragmented populations of <i>Pinus pinaster</i> Aiton. Molecular Ecology, 2009, 18, 4564-4576.	3.9	69
100	Spatiotemporal mating pattern variation in a windâ€pollinated Mediterranean shrub. Molecular Ecology, 2009, 18, 5195-5206.	3.9	14
101	Estimating gametic introgression rates in a risk assessment context: a case study with Scots pine relicts. Heredity, 2009, 103, 385-393.	2.6	25
102	Patterns of polymorphism resulting from longâ€range colonization in the Mediterranean conifer Aleppo pine. New Phytologist, 2009, 184, 1016-1028.	7.3	66
103	Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L Conservation Genetics, 2008, 9, 1665-1668.	1.5	39
104	GENETICALLY DEPAUPERATE BUT WIDESPREAD: THE CASE OF AN EMBLEMATIC MEDITERRANEAN PINE. Evolution; International Journal of Organic Evolution, 2008, 62, 680-688.	2.3	128
105	DISASSORTATIVE MATING, SEXUAL SPECIALIZATION, AND THE EVOLUTION OF GENDER DIMORPHISM IN HETERODICHOGAMOUS (i) ACER OPALUS (i). Evolution; International Journal of Organic Evolution, 2008, 62, 1676-1688.	2.3	35
106	Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity, 2008, 101, 19-26.	2.6	126
107	Mating system and pollen gene flow in Mediterranean maritime pine. Heredity, 2008, 100, 390-399.	2.6	62
108	Coppice forests and genetic diversity: A case study in Quercus pyrenaica Willd. from Central Spain. Forest Ecology and Management, 2008, 254, 225-232.	3.2	41

#	Article	IF	CITATIONS
109	Development and characterization of eight polymorphic microsatellite loci from <i>Pistacia lentiscus</i> L. (Anacardiaceae). Molecular Ecology Resources, 2008, 8, 904-906.	4.8	26
110	"Contrasting Patterns of Selection at Pinus pinaster Ait. Drought Stress Candidate Genes as Revealed by Genetic Differentiation Analyses". Molecular Biology and Evolution, 2008, 25, 417-437.	8.9	198
111	Association Genetics in Pinus taeda L. I. Wood Property Traits. Genetics, 2007, 175, 399-409.	2.9	258
112	Spatial genetic structure of an explicit glacial refugium of maritime pine (Pinus pinaster Aiton) in southeastern Spain., 2007,, 257-269.		20
113	Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Molecular Ecology, 2007, 16, 1207-1219.	3.9	62
114	Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Molecular Ecology, 2007, 16, 2137-2153.	3.9	129
115	Implications of natural propagule flow for containment of genetically modified forest trees. Tree Genetics and Genomes, 2007, 3, 141-152.	1.6	23
116	Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morocco. Annals of Forest Science, 2006, 63, 83-92.	2.0	44
117	Tree populations bordering on extinction: A case study in the endemic Canary Island pine. Biological Conservation, 2006, 129, 451-460.	4.1	27
118	SELECTIVE INTERACTIONS BETWEEN SHORT-DISTANCE POLLEN AND SEED DISPERSAL IN SELF-COMPATIBLE SPECIES. Evolution; International Journal of Organic Evolution, 2006, 60, 2257.	2.3	2
119	Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine. Molecular Ecology, 2006, 15, 2691-2698.	3.9	55
120	Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus) Tj ETQq0 0 0 rgI	BT ₃ /9verloo	:k ₈ 10 Tf 50 3
121	Forestâ€tree population genomics and adaptive evolution. New Phytologist, 2006, 170, 227-238.	7.3	206
122	OVULE DISCOUNTING IN AN OUTCROSSING, CRYPTICALLY DIOECIOUS TREE. Evolution; International Journal of Organic Evolution, 2006, 60, 2056.	2.3	4
123	DNA Sequence Variation and Selection of Tag Single-Nucleotide Polymorphisms at Candidate Genes for Drought-Stress Response in Pinus taeda L Genetics, 2006, 172, 1915-1926.	2.9	252
124	Genetic diversity and differentiation of two Mediterranean pines (Pinus halepensis Mill. and Pinus) Tj ETQq0 0 0 rg Distributions, 2005, 11, 257-263.	gBT /Overlo 4.1	ock 10 Tf 50 65
125	Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea) Tj ETQq $1\ 1\ 0.7$	'84314 rgE 2.6	BT /Overlock
126	Effects of local density on insect visitation and fertilization success in the narrow-endemicCentaurea corymbosa (Asteraceae). Oikos, 2005, 111, 130-142.	2.7	43

#	Article	IF	Citations
127	Fine-Scale Genetic Structure and Gene Dispersal in Centaurea corymbosa (Asteraceae). II. Correlated Paternity Within and Among Sibships. Genetics, 2004, 168, 1601-1614.	2.9	122
128	Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae) I. Pattern of pollen dispersal. Journal of Evolutionary Biology, 2004, 17, 795-806.	1.7	67
129	Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theoretical and Applied Genetics, 2004, 109, 103-111.	3.6	60
130	Studying within-stand structure and dynamics with geostatistical and molecular marker tools. Forest Ecology and Management, 2004, 189, 223-240.	3.2	14
131	Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages. Forest Ecology and Management, 2004, 197, 103-115.	3.2	49
132	Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers. Theoretical and Applied Genetics, 2003, 107, 1123-1131.	3.6	57
133	Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers. Annals of Forest Science, 2003, 60, 115-121.	2.0	17
134	What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies?. Annals of Forest Science, 2002, 59, 699-708.	2.0	24
135	Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theoretical and Applied Genetics, 2002, 104, 1290-1297.	3.6	76
136	Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity, 2002, 89, 199-206.	2.6	69
137	Understanding the genetic bases of adaptation to soil water deficit in trees through the examination of water use efficiency and cavitation resistance: maritime pine as a case study. The Journal of Plant Hydraulics, 0, 3, e008.	1.0	17