Yi-Peng Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566402/publications.pdf Version: 2024-02-01

YI-DENC LINC

#	Article	IF	CITATIONS
1	A unified model for the spatial and mass distribution of subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1208-1223.	4.4	96
2	Sussing Merger Trees: The Merger Trees Comparison Project. Monthly Notices of the Royal Astronomical Society, 2013, 436, 150-162.	4.4	80
3	Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1356-1379.	4.4	72
4	SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at zÂâ^¼Â6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 883, 142.	4.5	71
5	The CFHT Large Area U-band Deep Survey (CLAUDS). Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	48
6	Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys. II. Dark matter velocity statistics. Physical Review D, 2013, 88, .	4.7	46
7	The multidimensional dependence of halo bias in the eye of a machine: a tale of halo structure, assembly, and environment. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1900-1919.	4.4	42
8	CosmicGrowth Simulations—Cosmological simulations for structure growth studies. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	29
9	Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment. Astrophysical Journal, 2017, 848, 22.	4.5	25
10	Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling. Physical Review D, 2015, 91, .	4.7	24
11	The stellar halo of isolated central galaxies in the Hyper Suprime-Cam imaging survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1580-1606.	4.4	23
12	Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modeling. Physical Review D, 2015, 91, .	4.7	22
13	Determination of the large scale volume weighted halo velocity bias in simulations. Physical Review D, 2015, 91, .	4.7	21
14	Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations. Astrophysical Journal, 2018, 853, 25.	4.5	17
15	Sussing merger trees: stability and convergence. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1554-1568.	4.4	14
16	Massive star-forming galaxies have converted most of their halo gas into stars. Astronomy and Astrophysics, 2022, 663, A85.	5.1	13
17	Kriging interpolating cosmic velocity field. Physical Review D, 2015, 92, .	4.7	11
18	Verifications of Scaling Relations Useful for the Intrinsic Alignment Self-calibration. Astrophysical Journal, 2018, 864, 1.	4.5	11

YI-PENG JING

#	Article	IF	CITATIONS
19	The Stellar Mass in and around Isolated Central Galaxies: Connections to the Total Mass Distribution through Galaxy–Galaxy Lensing in the Hyper Suprime-Cam Survey. Astrophysical Journal, 2021, 919, 25.	4.5	11
20	The Next Generation Virgo Cluster Survey. XXXIV. Ultracompact Dwarf Galaxies in the Virgo Cluster. Astrophysical Journal, Supplement Series, 2020, 250, 17.	7.7	11
21	Strong conformity and assembly bias: towards a physical understanding of the galaxy–halo connection in SDSS clusters. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1789-1807.	4.4	10
22	Photometric Objects around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. I. Methods. Astrophysical Journal, 2022, 925, 31.	4.5	10
23	Groups and Protocluster Candidates in the CLAUDS and HSC-SSP Joint Deep Surveys. Astrophysical Journal, 2022, 933, 9.	4.5	9
24	Fast generation of weak lensing maps by the inverse-Gaussianization method. Physical Review D, 2016, 94, .	4.7	8
25	Star Formation in Massive Galaxies at Redshift z â^1⁄4 0.5. Astrophysical Journal, 2020, 895, 100.	4.5	8
26	Using the Modified Nearest Neighbor Method to Correct Fiber-collision Effects on Galaxy Clustering. Astrophysical Journal, 2019, 872, 26.	4.5	7
27	Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. II. Morphology, Color, and Size Dependences of the Stellar–Halo Mass Relation for Massive Galaxies. Astrophysical Journal, 2022, 926, 130.	4.5	7
28	The clustering of galaxies in the DESI imaging legacy surveys DR8: I. The luminosity and color dependent intrinsic clustering. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	6
29	Kriging interpolating cosmic velocity field. II. Taking anistropies and multistreaming into account. Physical Review D, 2017, 95, .	4.7	5
30	The Universal Specific Merger Rate of Dark Matter Halos. Astrophysical Journal, 2022, 929, 120.	4.5	5
31	The Breakdown Scale of H I Bias Linearity. Astrophysical Journal, 2021, 907, 4.	4.5	4
32	A giant central red disk galaxy at redshift z = 0.76: Challenge to theories of galaxy formation. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	3
33	The dawn of a new era of pulsar discoveries by Chinese radio telescope FAST. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	3
34	An Accurate P ³ M Algorithm for Gravitational Lensing Studies in Simulations. Astrophysical Journal, 2021, 915, 75.	4.5	1
35	New connection between dark matter direct detections, astrophysical and cosmological observations with self-interacting dark matter. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	1
36	A Large Massive Quiescent Galaxy Sample at zÂâ^1⁄4Â1.2. Astrophysical Journal, 2020, 905, 103.	4.5	1

#	Article	IF	CITATIONS
37	A fundamental step towards the cosmological 21 cm signal. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	0
38	New footprints of the Gaia-Sausage-Enceladus galaxy found in the LAMOST survey. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	0