
Hui Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566314/publications.pdf Version: 2024-02-01

HULLANC

#	Article	IF	CITATIONS
1	Physiological and transcriptional responses of Dictyosphaerium sp. under co-exposure of a typical microplastic and nonylphenol. Environmental Research, 2022, 204, 112287.	7.5	6
2	Nitrogen removal characteristics and predicted conversion pathways of a heterotrophic nitrification–aerobic denitrification bacterium, Pseudomonas aeruginosa P-1. Environmental Science and Pollution Research, 2021, 28, 7503-7514.	5.3	38
3	Interactions of iron-based nanoparticles with soil dissolved organic matter: adsorption, aging, and effects on hexavalent chromium removal. Journal of Hazardous Materials, 2021, 406, 124650.	12.4	20
4	Effects of Fe2O3 nanoparticles on extracellular polymeric substances and nonylphenol degradation in river sediment. Science of the Total Environment, 2021, 770, 145210.	8.0	12
5	Nanoscale zero-valent iron alters physiological, biochemical, and transcriptomic response of nonylphenol-exposed algae (Dictyosphaerium sp.). Environmental Science and Pollution Research, 2021, , 1.	5.3	1
6	Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Science of the Total Environment, 2020, 705, 136003.	8.0	27
7	Strategies for Discovering New Antibiotics from Bacteria in the Post-Genomic Era. Current Microbiology, 2020, 77, 3213-3223.	2.2	7
8	Enhanced excretion of extracellular polymeric substances associated with nonylphenol tolerance in Dictyosphaerium sp. Journal of Hazardous Materials, 2020, 395, 122644.	12.4	34
9	Application of Genetic Engineering Approaches to Improve Bacterial Metabolite Production. Current Protein and Peptide Science, 2020, 21, 488-496.	1.4	1
10	Bioaccumulation, growth performance, and transcriptomic response of Dictyosphaerium sp. after exposure to nonylphenol. Science of the Total Environment, 2019, 687, 416-422.	8.0	25
11	A Critical E-box in Barhl1 3′ Enhancer Is Essential for Auditory Hair Cell Differentiation. Cells, 2019, 8, 458.	4.1	11
12	Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice–wheat cropping soil under different fertilization treatments. Environmental Pollution, 2019, 249, 686-695.	7.5	22
13	New two-component regulatory system required for the constitutive expression of bph operon in Cupriavidus basilensis WS. Applied Microbiology and Biotechnology, 2019, 103, 3099-3109.	3.6	0
14	Barhl 1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells. International Journal of Biochemistry and Cell Biology, 2018, 96, 79-89.	2.8	16
15	The role of pparÎ ³ in embryonic development of Xenopus tropicalis under triphenyltin-induced teratogenicity. Science of the Total Environment, 2018, 633, 1245-1252.	8.0	13
16	Conjugational delivery of chromosomal integrative constructs for gene expression in the carbendazim-degrading Rhodococcus erythropolis D-1. Annals of Microbiology, 2018, 68, 773-780.	2.6	1
17	Design of Ribosome Binding Sites in Streptomyces coelicolor. Current Proteomics, 2017, 14, .	0.3	5
18	Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network. Scientific Reports, 2016, 6, 24255.	3.3	23

Hui Jiang

#	Article	IF	CITATIONS
19	The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins. Archives of Microbiology, 2016, 198, 193-197.	2.2	2
20	Improvement of FK506 production by synthetic biology approaches. Biotechnology Letters, 2016, 38, 2015-2021.	2.2	9
21	FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in <i>Streptomyces tsukubaensis</i> L19. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1693-1703.	3.0	18
22	Functions of Type II Thioesterases in Bacterial Polyketide Biosynthesis. Protein and Peptide Letters, 2016, 23, 1032-1037.	0.9	2
23	An acyltransferase domain of <scp>FK</scp> 506 polyketide synthase recognizing both an acyl carrier protein and coenzymeÂA as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS Journal, 2015, 282, 2527-2539.	4.7	20
24	Two Bacterial Group II Phosphopantetheinyl Transferases Involved in Both Primary Metabolism and Secondary Metabolism. Current Microbiology, 2015, 70, 390-397.	2.2	1
25	Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiological Research, 2015, 173, 25-33.	5.3	25
26	Identification and Biosynthetic Characterization of Natural Aromatic Azoxy Products from <i>Streptomyces chattanoogensis</i> L10. Organic Letters, 2015, 17, 6114-6117.	4.6	42
27	Biochemical Characterization of a Malonyl-Specific Acyltransferase Domain of FK506 Biosynthetic Polyketide Synthase. Protein and Peptide Letters, 2014, 22, 2-7.	0.9	14
28	Characterization and Evolutionary Implications of the Triad Asp-Xxx-Glu in Group II Phosphopantetheinyl Transferases. PLoS ONE, 2014, 9, e103031.	2.5	4
29	Characterization of type II thioesterases involved in natamycin biosynthesis in <i>Streptomyces chattanoogensis</i> L10. FEBS Letters, 2014, 588, 3259-3264.	2.8	11
30	Improvement of Natamycin Production by Engineering of Phosphopantetheinyl Transferases in Streptomyces chattanoogensis L10. Applied and Environmental Microbiology, 2013, 79, 3346-3354.	3.1	45
31	The Role of Tandem Acyl Carrier Protein Domains in Polyunsaturated Fatty Acid Biosynthesis. Journal of the American Chemical Society, 2008, 130, 6336-6337.	13.7	83