
Robert Hirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stationarity Is Dead: Whither Water Management?. Science, 2008, 319, 573-574.	6.0	3,381
2	Techniques of trend analysis for monthly water quality data. Water Resources Research, 1982, 18, 107-121.	1.7	2,159
3	A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resources Research, 1984, 20, 727-732.	1.7	1,261
4	Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 1991, 27, 803-813.	1.7	418
5	Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge. Bulletin of the American Meteorological Society, 2013, 94, 821-834.	1.7	365
6	Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs ¹ . Journal of the American Water Resources Association, 2010, 46, 857-880.	1.0	359
7	Estimating constituent loads. Water Resources Research, 1989, 25, 937-942.	1.7	355
8	A comparison of four streamflow record extension techniques. Water Resources Research, 1982, 18, 1081-1088.	1.7	240
9	On Critiques of "Stationarity is Dead: Whither Water Management?― Water Resources Research, 2015, 51, 7785-7789.	1.7	204
10	River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Science of the Total Environment, 2015, 508, 488-497.	3.9	202
11	Nitrate in the Mississippi River and Its Tributaries, 1980 to 2008: Are We Making Progress?. Environmental Science & Technology, 2011, 45, 7209-7216.	4.6	176
12	Has the magnitude of floods across the USA changed with global CO ₂ levels?. Hydrological Sciences Journal, 2012, 57, 1-9.	1.2	157
13	METHODS OF FITTING A STRAIGHT LINE TO DATA: EXAMPLES IN WATER RESOURCES. Journal of the American Water Resources Association, 1984, 20, 705-711.	1.0	152
14	A bootstrap method for estimating uncertainty of water quality trends. Environmental Modelling and Software, 2015, 73, 148-166.	1.9	129
15	Fragmented patterns of flood change across the United States. Geophysical Research Letters, 2016, 43, 10232-10239.	1.5	123
16	An evaluation of some record reconstruction techniques. Water Resources Research, 1979, 15, 1781-1790.	1.7	112
17	Mean square error of regressionâ€based constituent transport estimates. Water Resources Research, 1990, 26, 2069-2077.	1.7	110
18	Not higher but more often. Nature Climate Change, 2015, 5, 198-199.	8.1	98

ROBERT HIRSCH

#	Article	IF	CITATIONS
19	Plotting positions for historical floods and their precision. Water Resources Research, 1987, 23, 715-727.	1.7	92
20	Synthetic hydrology and water supply reliability. Water Resources Research, 1979, 15, 1603-1615.	1.7	77
21	A Perspective on Nonstationarity and Water Management1. Journal of the American Water Resources Association, 2011, 47, 436-446.	1.0	77
22	Large Biases in Regressionâ€Based Constituent Flux Estimates: Causes and Diagnostic Tools. Journal of the American Water Resources Association, 2014, 50, 1401-1424.	1.0	74
23	An evaluation of methods for estimating decadal stream loads. Journal of Hydrology, 2016, 542, 185-203.	2.3	73
24	Low streamflow trends at human-impacted and reference basins in the United States. Journal of Hydrology, 2020, 580, 124254.	2.3	59
25	Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation. Environmental Science & Technology, 2016, 50, 1877-1886.	4.6	51
26	Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 2019, 48, 1191-1203.	1.0	48
27	STATISTICAL METHODS AND SAMPLING DESIGN FOR ESTIMATING STEP TRENDS IN SURFACE-WATER QUALITY. Journal of the American Water Resources Association, 1988, 24, 493-503.	1.0	44
28	Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA. Water Resources Research, 2014, 50, 2425-2443.	1.7	43
29	USCS Study reveals a decline in long-record streamgages. Eos, 1999, 80, 605.	0.1	42
30	Probability plotting position formulas for flood records with historical information. Journal of Hydrology, 1987, 96, 185-199.	2.3	38
31	River Waterâ€Quality Concentration and Flux Estimation Can be Improved by Accounting for Serial Correlation Through an Autoregressive Model. Water Resources Research, 2019, 55, 9705-9723.	1.7	38
32	Effect of censoring trace-level water-quality data on trend-detection capability. Environmental Science & Technology, 1984, 18, 530-535.	4.6	37
33	Use of flow-normalization to evaluate nutrient concentration and flux changes in Lake Champlain tributaries, 1990–2009. Journal of Great Lakes Research, 2012, 38, 58-67.	0.8	37
34	Point sources and agricultural practices control spatial-temporal patterns of orthophosphate in tributaries to Chesapeake Bay. Science of the Total Environment, 2019, 652, 422-433.	3.9	33
35	"Applicability of the t-Test for Detecting Trends in Water Quality Variables," by Robert H. Montgomery and Jim C. Loftis. Journal of the American Water Resources Association, 1988, 24, 201-204.	1.0	31
36	Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997–2013. Hydrological Processes, 2017, 31, 902-915.	1.1	31

ROBERT HIRSCH

#	ARTICLE	IF	CITATIONS
37	The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrological Processes, 2017, 31, 4705-4718.	1.1	30
38	Gains from joint operation of multiple reservoir systems. Water Resources Research, 1977, 13, 239-245.	1.7	28
39	DETECTABILITY OF STEP TRENDS IN THE RATE OF ATMOSPHERIC DEPOSITION OF SULFATE. Journal of the American Water Resources Association, 1985, 21, 773-784.	1.0	22
40	Aquatic Processes and Systems in PerspectiveU.S. Geological Survey perspective on water-quality monitoring and assessment. Journal of Environmental Monitoring, 2006, 8, 512.	2.1	19
41	Substantial Declines in Salinity Observed Across the Upper Colorado River Basin During the 20th Century, 1929–2019. Water Resources Research, 2021, 57, e2020WR028581.	1.7	17
42	Antecedent flow conditions and nitrate concentrations in the Mississippi River basin. Hydrology and Earth System Sciences, 2014, 18, 967-979.	1.9	13
43	Updating estimates of low-streamflow statistics to account for possible trends. Hydrological Sciences Journal, 2019, 64, 1404-1414.	1.2	12
44	Past, Present, and Future of Water Data Delivery from the U.S. Geological Survey. Journal of Contemporary Water Research and Education, 2014, 153, 4-15.	0.7	10
45	Lake Erie tributary nutrient trend evaluation: Normalizing concentrations and loads to reduce flow variability. Ecological Indicators, 2021, 125, 107601.	2.6	10
46	The Occurrence of Large Floods in the United States in the Modern Hydroclimate Regime: Seasonality, Trends, and Large‧cale Climate Associations. Water Resources Research, 2022, 58, .	1.7	8
47	Spatial and Temporal Patterns of Low Streamflow and Precipitation Changes in the Chesapeake Bay Watershed. Journal of the American Water Resources Association, 2021, 57, 96-108.	1.0	7
48	The Science, Information, and Engineering Needed to Manage Water Availability and Quality in 2050. , 2012, , 215-225.		0
49	The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrological Processes, 2020, 34, 150-152.	1.1	0