Bianca C Bernardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Old Drug, New Trick: Tilorone, a Broad-Spectrum Antiviral Drug as a Potential Anti-Fibrotic Therapeutic for the Diseased Heart. Pharmaceuticals, 2021, 14, 263.	1.7	3
2	FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1470-H1485.	1.5	15
3	Translational Potential of Non-coding RNAs for Cardiovascular Disease. Advances in Experimental Medicine and Biology, 2020, 1229, 343-354.	0.8	5
4	Noncoding RNAs regulating cardiac muscle mass. Journal of Applied Physiology, 2019, 127, 633-644.	1.2	10
5	Gene delivery of medium chain acyl-coenzyme A dehydrogenase induces physiological cardiac hypertrophy and protects against pathological remodelling. Clinical Science, 2018, 132, 381-397.	1.8	17
6	Adeno-Associated Virus Gene Therapy: Translational Progress and Future Prospects in the Treatment of Heart Failure. Heart Lung and Circulation, 2018, 27, 1285-1300.	0.2	30
7	Generation of MicroRNA-34 Sponges and Tough Decoys for the Heart: Developments and Challenges. Frontiers in Pharmacology, 2018, 9, 1090.	1.6	21
8	Lipidomic Profiles of the Heart and Circulation in Response to Exercise versus Cardiac Pathology: A Resource of Potential Biomarkers and Drug Targets. Cell Reports, 2018, 24, 2757-2772.	2.9	55
9	Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiological Reviews, 2018, 98, 419-475.	13.1	120
10	Identification of miR-34 regulatory networks in settings of disease and antimiR-therapy: Implications for treating cardiac pathology and other diseases. RNA Biology, 2017, 14, 500-513.	1.5	46
11	βâ€Adrenergic Stimulation Induces Histone Deacetylase 5 (HDAC5) Nuclear Accumulation in Cardiomyocytes by B55αâ€PP2Aâ€Mediated Dephosphorylation. Journal of the American Heart Association, 2017, 6, .	1.6	29
12	The IGF1-PI3K-Akt Signaling Pathway in Mediating Exercise-Induced Cardiac Hypertrophy and Protection. Advances in Experimental Medicine and Biology, 2017, 1000, 187-210.	0.8	74
13	Sex differences in response to miRNAâ€34a therapy in mouse models of cardiac disease: identification of sexâ€, disease―and treatmentâ€regulated miRNAs. Journal of Physiology, 2016, 594, 5959-5974.	1.3	40
14	Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiology Clinics, 2016, 34, 515-530.	0.9	30
15	Inhibition of miR-154 Protects Against Cardiac Dysfunction and Fibrosis in a Mouse Model of Pressure Overload. Scientific Reports, 2016, 6, 22442.	1.6	43
16	HSP70: therapeutic potential in acute and chronic cardiac disease settings. Future Medicinal Chemistry, 2016, 8, 2177-2183.	1.1	10
17	<i>Smad7</i> gene delivery prevents muscle wasting associated with cancer cachexia in mice. Science Translational Medicine, 2016, 8, 348ra98.	5.8	70
18	From Bench to Bedside: New Approaches to Therapeutic Discovery for Heart Failure. Heart Lung and Circulation, 2016, 25, 425-434.	0.2	14

BIANCA C BERNARDO

#	Article	IF	CITATIONS
19	Therapeutic potential of targeting microRNAs to regulate cardiac fibrosis: miR-433 a new fibrotic player. Annals of Translational Medicine, 2016, 4, 548-548.	0.7	8
20	Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Archives of Toxicology, 2015, 89, 1401-1438.	1.9	492
21	miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Medicinal Chemistry, 2015, 7, 1771-1792.	1.1	196
22	Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation. PLoS ONE, 2015, 10, e0145173.	1.1	15
23	Therapeutic silencing of miRâ€652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB Journal, 2014, 28, 5097-5110.	0.2	74
24	The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nature Communications, 2014, 5, 5705.	5.8	86
25	Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. , 2014, 142, 375-415.		437
26	MicroRNAs differentially regulated in cardiac and skeletal muscle in health and disease: Potential drug targets?. Clinical and Experimental Pharmacology and Physiology, 2014, 41, n/a-n/a.	0.9	24
27	The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Medicinal Chemistry, 2014, 6, 205-222.	1.1	60
28	Silencing of miR-34a Attenuates Cardiac Dysfunction in a Setting of Moderate, but Not Severe, Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e90337.	1.1	67
29	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Cell Biology, 2013, 203, 345-357.	2.3	166
30	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Experimental Medicine, 2013, 210, 21012OIA54.	4.2	1
31	Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17615-17620.	3.3	391
32	Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development. Molecular and Cellular Proteomics, 2012, 11, M111.014159.	2.5	73
33	Phosphoinositide 3-Kinase p110α Is a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction. Circulation: Heart Failure, 2012, 5, 523-534.	1.6	115
34	A MicroRNA Guide for Clinicians and Basic Scientists: Background and Experimental Techniques. Heart Lung and Circulation, 2012, 21, 131-142.	0.2	78
35	The yin and yang of adaptive and maladaptive processes in heart failure. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e163-e172.	0.5	8
36	Phosphoinositide 3-Kinase (PI3K(p110α)) Directly Regulates Key Components of the Z-disc and Cardiac Structure*. Journal of Biological Chemistry, 2011, 286, 30837-30846.	1.6	32

#	Article	IF	CITATIONS
37	Cartilage Intermediate Layer Protein 2 (CILP-2) Is Expressed in Articular and Meniscal Cartilage and Down-regulated in Experimental Osteoarthritis. Journal of Biological Chemistry, 2011, 286, 37758-37767.	1.6	66
38	Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. , 2010, 128, 191-227.		694
39	PI3K(p110α) Protects Against Myocardial Infarction-Induced Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 724-732.	1.1	160
40	A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 330-340.	0.9	28
41	Inhibition of miR-29 protects against cardiac hypertrophy and fibrosis: new insight for the role of miR-29 in the heart. Non-coding RNA Investigation, 0, 2, 14-14.	0.6	4