Julia Laskin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4566237/julia-laskin-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 285
 12,863
 63
 99

 papers
 citations
 h-index
 g-index

 379
 14,960
 6.6
 6.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
285	Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation <i>Molecular Metabolism</i> , 2022 , 59, 101456	8.8	3
284	Enhancement of lipid signals with ammonium fluoride in negative mode Nano-DESI mass spectrometry imaging. <i>International Journal of Mass Spectrometry</i> , 2022 , 478, 116859	1.9	0
283	Designing New Metal Chalcogenide Nanoclusters through Atom-by-Atom Substitution. <i>Small</i> , 2021 , 17, e2002927	11	3
282	Self-supervised clustering of mass spectrometry imaging data using contrastive learning <i>Chemical Science</i> , 2021 , 13, 90-98	9.4	2
281	Design and Performance of a Soft-Landing Instrument for Fragment Ion Deposition. <i>Analytical Chemistry</i> , 2021 , 93, 14489-14496	7.8	2
280	Discovery of a Neutral 40-Pd-Oxo Molecular Disk, [PdO(OH){(CH)AsO}]: Synthesis, Structural Characterization, and Catalytic Studies. <i>Inorganic Chemistry</i> , 2021 , 60, 17339-17347	5.1	2
279	Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au(PPh)H. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2502-2508	6.4	4
278	Innentitelbild: Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbontarbon Double Bonds (Angew. Chem. 14/2021). <i>Angewandte Chemie</i> , 2021 , 133, 7526-7526	3.6	
277	Quantitative Mass Spectrometry Imaging of Biological Systems. <i>Annual Review of Physical Chemistry</i> , 2021 , 72, 307-329	15.7	17
276	Discovery and Supramolecular Interactions of Neutral Palladium-Oxo Clusters Pd16 and Pd24. Angewandte Chemie, 2021 , 133, 3676-3683	3.6	1
275	CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 2735-2745	4.4	6
274	Discovery and Supramolecular Interactions of Neutral Palladium-Oxo Clusters Pd and Pd. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3632-3639	16.4	9
273	Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging. <i>IS&T International Symposium on Electronic Imaging</i> , 2021 , 2021, 2901-2907	1	3
272	Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon Double Bonds**. <i>Angewandte Chemie</i> , 2021 , 133, 7637-7641	3.6	1
271	Spatial Segmentation of Mass Spectrometry Imaging Data by Combining Multivariate Clustering and Univariate Thresholding. <i>Analytical Chemistry</i> , 2021 , 93, 3477-3485	7.8	9
270	Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon-Carbon Double Bonds*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7559-7563	16.4	15
269	Catalytic Pyrolysis of Lignin Model Compounds (Pyrocatechol, Guaiacol, Vanillic and Ferulic Acids) over Nanoceria Catalyst for Biomass Conversion. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7205	2.6	3

(2019-2021)

268	Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. <i>Analytical Chemistry</i> , 2021 , 93, 11576-11584	7.8	3
267	High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. <i>Analytica Chimica Acta</i> , 2021 , 1186, 339085	6.6	7
266	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
265	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
264	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
263	Preparative Mass Spectrometry Using a Rotating-Wall Mass Analyzer. <i>Angewandte Chemie</i> , 2020 , 132, 7785-7790	3.6	O
262	Preparative Mass Spectrometry Using a Rotating-Wall Mass Analyzer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7711-7716	16.4	4
261	Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1105-1129	6.8	64
2 60	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
259	Imaging of Triglycerides in Tissues Using Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry. <i>International Journal of Mass Spectrometry</i> , 2020 , 448,	1.9	16
258	Properties of gaseous closo-[BX] dianions (X = Cl, Br, I). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 17713-17724	3.6	7
258 257		3.6	7
	22, 17713-17724 Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry.		1
257	Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1875-1884 An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples*.	3.5	1
² 57	Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1875-1884 An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples*. Angewandte Chemie - International Edition, 2020, 59, 22388-22391 Ion Mobility-Mass Spectrometry Imaging Workflow. Journal of the American Society for Mass	3.5	7
² 57 ² 56 ² 55	Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1875-1884 An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples*. Angewandte Chemie - International Edition, 2020, 59, 22388-22391 Ion Mobility-Mass Spectrometry Imaging Workflow. Journal of the American Society for Mass Spectrometry, 2020, 31, 2437-2442 Direct functionalization of C-H bonds by electrophilic anions. Proceedings of the National Academy	3.5 16.4 3.5	7
257 256 255 254	Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1875-1884 An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples*. Angewandte Chemie - International Edition, 2020, 59, 22388-22391 Ion Mobility-Mass Spectrometry Imaging Workflow. Journal of the American Society for Mass Spectrometry, 2020, 31, 2437-2442 Direct functionalization of C-H bonds by electrophilic anions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23374-23379 An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples**.	3.5 16.4 3.5 11.5	1 7 11 9

250	Properties of perhalogenated {closo-B} and {closo-B} multiply charged anions and a critical comparison with {closo-B} in the gas and the condensed phase. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5903-5915	3.6	18
249	Design and Performance of a Dual-Polarity Instrument for Ion Soft Landing. <i>Analytical Chemistry</i> , 2019 , 91, 5904-5912	7.8	15
248	Statistical detection of differentially abundant ions in mass spectrometry-based imaging experiments with complex designs. <i>International Journal of Mass Spectrometry</i> , 2019 , 437, 49-57	1.9	3
247	Gas-Phase Fragmentation of Host-Guest Complexes of Cyclodextrins and Polyoxometalates. Journal of the American Society for Mass Spectrometry, 2019 , 30, 1934-1945	3.5	8
246	Lipid Coverage in Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Mouse Lung Tissues. <i>Analytical Chemistry</i> , 2019 , 91, 11629-11635	7.8	27
245	Electroosmotic extraction coupled to mass spectrometry analysis of metabolites in live cells. <i>Methods in Enzymology</i> , 2019 , 628, 293-307	1.7	3
244	The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. <i>Nature</i> , 2019 , 574, 187-192	50.4	162
243	Aqueous Photochemistry of Secondary Organic Aerosol of Pinene and Humulene in the Presence of Hydrogen Peroxide or Inorganic Salts. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2736-2746	3.2	13
242	High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. <i>Nature Protocols</i> , 2019 , 14, 3445-3470	18.8	55
241	Liquid II quid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12515-12529	6.8	14
240	Gas phase fragmentation of adducts between dioxygen and closo-borate radical anions. <i>International Journal of Mass Spectrometry</i> , 2019 , 436, 71-78	1.9	1
239	Controlling the Activity and Stability of Electrochemical Interfaces Using Atom-by-Atom Metal Substitution of Redox Species. <i>ACS Nano</i> , 2019 , 13, 458-466	16.7	18
238	Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1643-1652	6.8	46
237	High Spatial Resolution Imaging of Mouse Pancreatic Islets Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2018 , 90, 6548-6555	7.8	47
236	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2461-2480	6.8	46
235	Mass Spectrometry Analysis in Atmospheric Chemistry. <i>Analytical Chemistry</i> , 2018 , 90, 166-189	7.8	52
234	In Situ Infrared Spectroelectrochemistry for Understanding Structural Transformations of Precisely Defined Ions at Electrochemical Interfaces. <i>Analytical Chemistry</i> , 2018 , 90, 10935-10942	7.8	18
233	From Isolated Ions to Multilayer Functional Materials Using Ion Soft Landing. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16270-16284	16.4	42

232	Quantitative Extraction and Mass Spectrometry Analysis at a Single-Cell Level. <i>Analytical Chemistry</i> , 2018 , 90, 7937-7945	7.8	39	
231	Towards High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry Coupled to Shear Force Microscopy. <i>Journal of the American Society for Mass Spectrometry</i> , 2018 , 29, 316-322	3.5	42	
230	Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. <i>ACS Symposium Series</i> , 2018 , 127-147	0.4	5	
229	Molecular Characterization of Atmospheric Brown Carbon. <i>ACS Symposium Series</i> , 2018 , 261-274	0.4	9	
228	Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. <i>Analytical Chemistry</i> , 2018 , 90, 12493-12502	7.8	86	
227	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6331-6351	6.8	66	
226	Self-organizing layers from complex molecular anions. <i>Nature Communications</i> , 2018 , 9, 1889	17.4	27	
225	Von isolierten Ionen zu mehrschichtigen funktionellen Materialien durch sanfte Landung von Ionen. <i>Angewandte Chemie</i> , 2018 , 130, 16506-16521	3.6	6	
224	DRILL Interface Makes Ion Soft Landing Broadly Accessible for Energy Science and Applications. <i>Batteries and Supercaps</i> , 2018 , 1, 97-101	5.6	11	
223	Aqueous Photochemistry of Secondary Organic Aerosol of Pinene and Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 1298-1309	2.8	40	
222	In-Plane Multimagnetron Approach 2017 , 79-100		1	
221	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. <i>CheM</i> , 2017 , 2, 655-667	16.2	85	
220	Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1304-1312	3.5	6	
219	Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17187-17198	3.6	19	
218	Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. <i>Chemical Communications</i> , 2017 , 53, 7389-7392	5.8	27	
217	Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography. <i>Analytical Chemistry</i> , 2017 , 89, 1131-1137	7.8	36	
216	Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol. <i>Environmental Science & Environmental Sc</i>	10.3	48	
215	Effect of Relative Humidity on the Composition of Secondary Organic Aerosol from Oxidation of Toluene 2017 ,		1	

214 Surface Ionization and Soft Landing Techniques in Mass Spectrometry **2017**, 344-352

213	Photochemistry of Products of the Aqueous Reaction of Methylglyoxal with Ammonium Sulfate. <i>ACS Earth and Space Chemistry</i> , 2017 , 1, 522-532	3.2	35
212	A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. <i>Environmental Science & Environmental Science & </i>	10.3	12
211	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. <i>Environmental Science & Event. Environmental Science & Event. Event. Environmental Science & Event. Event</i>	10.3	134
210	LungMAP: The Molecular Atlas of Lung Development Program. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2017 , 313, L733-L740	5.8	103
209	Secondary organic aerosol from atmospheric photooxidation of only of only of the organic aerosol from atmospheric photooxidation of only of the organic aerosol from atmospheric photooxidation of organic aerosol from organi	6.8	10
208	Quantitative Mass Spectrometry Imaging of Molecules in Biological Systems 2017 , 43-72		3
207	Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung. <i>Scientific Reports</i> , 2017 , 7, 40555	4.9	49
206	Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site. <i>Scientific Reports</i> , 2016 , 6, 33023	4.9	13
205	In situ solid-state electrochemistry of mass-selected ions at well-defined electrode-electrolyte interfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13324-13329	11.5	16
204	Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing. <i>Nature Communications</i> , 2016 , 7, 11399	17.4	66
203	Optical properties and aging of light-absorbing secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12815-12827	6.8	94
202	Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4511-4527	6.8	63
201	Understanding ligand effects in gold clusters using mass spectrometry. <i>Analyst, The</i> , 2016 , 141, 3573-89	95	35
200	Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry B, 2016 , 120, 4927-36	3.4	10
199	Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques. <i>Analytical Chemistry</i> , 2016 , 88, 52-73	7.8	107
198	Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 8785-93	3.6	61
197	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. <i>Environmental Science & Environmental Scie</i>	10.3	108

(2015-2016)

196	Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9021-8	3.6	14
195	Soft- and reactive landing of ions onto surfaces: Concepts and applications. <i>Mass Spectrometry Reviews</i> , 2016 , 35, 439-79	11	50
194	Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing. <i>Journal of Chemical Physics</i> , 2016 , 145, 174701	3.9	8
193	Soft Landing of Complex Ions for Studies in Catalysis and Energy Storage. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23305-23322	3.8	21
192	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. <i>Environmental Science & Environmental Scienc</i>	10.3	154
191	Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3142-50	6.4	26
190	Soft landing of bare nanoparticles with controlled size, composition, and morphology. <i>Nanoscale</i> , 2015 , 7, 3491-503	7.7	55
189	IonBurface collisions in mass spectrometry: Where analytical chemistry meets surface science. <i>International Journal of Mass Spectrometry</i> , 2015 , 377, 188-200	1.9	6
188	Chemistry of atmospheric brown carbon. <i>Chemical Reviews</i> , 2015 , 115, 4335-82	68.1	768
187	Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling. <i>Environmental Science & Environmental Science & E</i>	10.3	42
186	New approach for studying slow fragmentation kinetics in FT-ICR: Surface-induced dissociation combined with resonant ejection. <i>International Journal of Mass Spectrometry</i> , 2015 , 378, 160-168	1.9	5
185	Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen. <i>Nanoscale</i> , 2015 , 7, 12379-91	7.7	29
184	Cationic gold clusters ligated with differently substituted phosphines: effect of substitution on ligand reactivity and binding. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 14636-46	3.6	20
183	Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 23312-25	3.6	145
182	Gas-Phase Fragmentation Pathways of Mixed Addenda Keggin Anions: PMo12-nW nO 40 3- (n = 0-12). <i>Journal of the American Society for Mass Spectrometry</i> , 2015 , 26, 1027-35	3.5	10
181	Design and performance of a high-flux electrospray ionization source for ion soft landing. <i>Analyst, The</i> , 2015 , 140, 2957-63	5	37
180	Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry. <i>Environmental Science & Environmental & Enviro</i>	10.3	25
179	Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions. <i>Faraday Discussions</i> , 2015 , 184, 339-57	3.6	14

178	Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. <i>Environmental Science & Environmental Science & Env</i>	10.3	103
177	Soft landing of mass-selected gold clusters: Influence of ion and ligand on charge retention and reactivity. <i>International Journal of Mass Spectrometry</i> , 2015 , 377, 205-213	1.9	10
176	Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 2063-71	4.4	37
175	Surface-induced dissociation: a unique tool for studying energetics and kinetics of the gas-phase fragmentation of large ions. <i>European Journal of Mass Spectrometry</i> , 2015 , 21, 377-89	1.1	4
174	Effect of basic residue on the kinetics of peptide fragmentation examined using surface-induced dissociation combined with resonant ejection. <i>International Journal of Mass Spectrometry</i> , 2015 , 391, 24-30	1.9	2
173	Towards Adaptive, Streaming Analysis of X-ray Tomography Data. <i>Synchrotron Radiation News</i> , 2015 , 28, 10-14	0.6	3
172	High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 2594-606	2.8	53
171	Imaging of lipids and metabolites using nanospray desorption electrospray ionization mass spectrometry. <i>Methods in Molecular Biology</i> , 2015 , 1203, 99-106	1.4	6
170	Matrix effects in biological mass spectrometry imaging: identification and compensation. <i>Analyst, The,</i> 2014 , 139, 3528-32	5	62
169	Reactive Landing of Dendrimer Ions onto Activated Self-Assembled Monolayer Surfaces. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2602-2608	3.8	6
168	Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions. <i>Chemical Science</i> , 2014 , 5, 3275	9.4	29
167	Dynamics of energy transfer and soft-landing in collisions of protonated dialanine with perfluorinated self-assembled monolayer surfaces. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23769	-7 8	11
166	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10629-42	3.6	76
165	Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass-Selected Ions. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 27611-27622	3.8	25
164	Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid. <i>Electroanalysis</i> , 2014 , 26, 178-183	3	33
163	Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. <i>Environmental Science & Environmental Scienc</i>	10.3	189
162	Discovery and mechanistic studies of facile N-terminal CEC bond cleavages in the dissociation of tyrosine-containing peptide radical cations. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 4273-81	3.4	9
161	Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. <i>Environmental Science & Environmental Science & Description</i> 2014, 48, 10993-1001	10.3	102

160	Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 8464-70	2.8	14
159	Shotgun approach for quantitative imaging of phospholipids using nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2014 , 86, 1872-80	7.8	67
158	In situ SIMS and IR spectroscopy of well-defined surfaces prepared by soft landing of mass-selected ions. <i>Journal of Visualized Experiments</i> , 2014 ,	1.6	1
157	Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 12,7	4.4 06-12,	31 720
156	Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 13801-1381	6.8	131
155	Molecular selectivity of brown carbon chromophores. <i>Environmental Science & Environmental Science & E</i>	10.3	69
154	Charge retention by organometallic dications on self-assembled monolayer surfaces. <i>International Journal of Mass Spectrometry</i> , 2014 , 365-366, 187-193	1.9	5
153	The characterization of living bacterial colonies using nanospray desorption electrospray ionization mass spectrometry. <i>Methods in Molecular Biology</i> , 2014 , 1151, 199-208	1.4	2
152	Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation. <i>Journal of the American Society for Mass Spectrometry</i> , 2013 , 24, 1385-95	3.5	12
151	Fragmentation energetics of clusters relevant to atmospheric new particle formation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3276-85	16.4	36
150	Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. <i>Atmospheric Environment</i> , 2013 , 68, 265-272	5.3	49
149	Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 10385-91	7.8	80
148	High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 9596-603	7.8	56
147	Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2013 , 31, 50820	2.9	196
146	An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry. <i>Analytical Methods</i> , 2013 , 5, 72-80	3.2	22
145	Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 882-9	7.8	89
144	Influence of heteroanion and ammonium cation size on the composition and gas-phase fragmentation of polyoxovanadates. <i>International Journal of Mass Spectrometry</i> , 2013 , 354-355, 333-34	1 ^{1.9}	9
143	Spatially resolved analysis of glycolipids and metabolites in living Synechococcus sp. PCC 7002 using nanospray desorption electrospray ionization. <i>Analyst, The</i> , 2013 , 138, 1971-8	5	41

142	Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. <i>Environmental Science & Environmental & Environme</i>	10.3	91
141	Brown carbon formation from ketoaldehydes of biogenic monoterpenest. <i>Faraday Discussions</i> , 2013 , 165, 473-94	3.6	71
140	Probing molecular associations of field-collected and laboratory-generated SOA with nano-DESI high-resolution mass spectrometry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 1042-10)5 ⁴ 1 ⁴	17
139	Mechanistic examination of CECIDond cleavages of tryptophan residues during dissociations of molecular peptide radical cations. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 1059-68	2.8	15
138	Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane. <i>ChemPlusChem</i> , 2013 , 78, 1033-1039	2.8	11
137	New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. <i>International Reviews in Physical Chemistry</i> , 2013 , 32, 128-170	7	37
136	Energy and entropy effects in dissociation of peptide radical anions. <i>International Journal of Mass Spectrometry</i> , 2012 , 316-318, 251-258	1.9	7
135	Effect of the basic residue on the energetics and dynamics of dissociation of phosphopeptides. <i>International Journal of Mass Spectrometry</i> , 2012 , 330-332, 295-301	1.9	12
134	Velo and REXAN Integrated data management and high speed analysis for experimental facilities 2012 ,		1
133	Direct aqueous photochemistry of isoprene high-NO(x) secondary organic aerosol. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9702-14	3.6	36
132	Applications of high-resolution electrospray ionization mass spectrometry to measurements of average oxygen to carbon ratios in secondary organic aerosols. <i>Environmental Science & Environmental Sci</i>	10.3	30
131	Coverage-Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-Selected Ions. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24977-24986	3.8	37
130	Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 141-8	7.8	240
129	Study of electrochemical reactions using nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 5737-43	7.8	48
128	Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. <i>ACS Nano</i> , 2012 , 6, 573-82	16.7	51
127	COBRA: a computational brewing application for predicting the molecular composition of organic aerosols. <i>Environmental Science & Environmental Scienc</i>	10.3	6
126	Chemical characterization of crude petroleum using nanospray desorption electrospray ionization coupled with high-resolution mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 1517-25	7.8	59
125	Automated platform for high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 8351-6	7.8	91

12	Chemical analysis of complex organic mixtures using reactive nanospray desorption electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 7179-87	7.8	43	
12	Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-	·n/a	159	
12	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. <i>Environmental Chemistry</i> , 2012 , 9, 163	3.2	71	
12	Mass spectral molecular networking of living microbial colonies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E1743-52	11.5	593	
12	Visualization of high resolution spatial mass spectrometric data during acquisition. <i>Annual</i> International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2012 , 2012, 5545-8	0.9	16	
11	Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant. <i>Soft Matter</i> , 2011 , 7, 8905	3.6	43	
11	Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3612-29	3.6	117	
11	Soft landing of complex molecules on surfaces. <i>Annual Review of Analytical Chemistry</i> , 2011 , 4, 83-104	12.5	88	
11	Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmospheric Chemistry and Physics, 2011 , 11, 6931-6944	6.8	137	
11	Formation of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes. <i>European Journal of Mass Spectrometry</i> , 2011 , 17, 543-56	1.1	38	
11.	Energetics and dynamics of dissociation of deprotonated peptides: Fragmentation of angiotensin analogs. <i>International Journal of Mass Spectrometry</i> , 2011 , 308, 275-280	1.9	6	
11	IonCCDIfor direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2011 , 22, 612-2	:3 ^{3.5}	33	
11	Characterization of the ion beam focusing in a mass spectrometer using an IonCCDIdetector. Journal of the American Society for Mass Spectrometry, 2011 , 22, 1388-94	3.5	12	
11	Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. Physical Chemistry Chemical Physics, 2011 , 13, 267-75	3.6	27	
11	Photolytic processing of secondary organic aerosols dissolved in cloud droplets. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 12199-212	3.6	95	
10	Competition between covalent and noncovalent bond cleavages in dissociation of phosphopeptide-amine complexes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 6936-46	3.6	14	
10	Case study of water-soluble metal containing organic constituents of biomass burning aerosol. Environmental Science & Camp; Technology, 2011 , 45, 1257-63	10.3	39	
10	Monodisperse Au11 clusters prepared by soft landing of mass selected ions. <i>Analytical Chemistry</i> , 2011 , 83, 8069-72	7.8	47	

106	Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	83
105	Higher-order mass defect analysis for mass spectra of complex organic mixtures. <i>Analytical Chemistry</i> , 2011 , 83, 4924-9	7.8	72
104	Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. <i>Analyst, The</i> , 2010 , 135, 2233-6	5	326
103	Soft-Landing of Colli(salen)+ and MnIII(salen)+ on Self-Assembled Monolayer Surfaces. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5305-5311	3.8	30
102	High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler. <i>Analytical Chemistry</i> , 2010 , 82, 8010-6	7.8	42
101	High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. <i>Analytical Chemistry</i> , 2010 , 82, 2048-58	7.8	140
100	Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 6926-32	7.8	66
99	Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16006-16	16.4	22
98	Formation, isomerization, and dissociation of alpha-carbon-centered and pi-centered glycylglycyltryptophan radical cations. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 2270-80	3.4	31
97	In situ reactivity and TOF-SIMS analysis of surfaces prepared by soft and reactive landing of mass-selected ions. <i>Analytical Chemistry</i> , 2010 , 82, 5718-27	7.8	37
96	Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 7979-86	7.8	96
95	Effect of the surface on the secondary structure of soft landed peptide ions. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12802-10	3.6	25
94	Fragmentation of alpha-radical cations of arginine-containing peptides. <i>Journal of the American Society for Mass Spectrometry</i> , 2010 , 21, 511-21	3.5	49
93	High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. <i>Atmospheric Environment</i> , 2010 , 44, 1032-1042	5.3	139
92	Preparation of surface organometallic catalysts by gas-phase ligand stripping and reactive landing of mass-selected ions. <i>Chemistry - A European Journal</i> , 2010 , 16, 14433-8	4.8	30
91	Surface Induced Dissociation and Soft Landing Techniques in Mass Spectrometry 2010 , 2778-2787		
90	Influence of the charge state on the structures and interactions of vancomycin antibiotics with cell-wall analogue peptides: experimental and theoretical studies. <i>Chemistry - A European Journal</i> , 2009 , 15, 2081-90	4.8	17
89	Effect of the surface on charge reduction and desorption kinetics of soft landed peptide ions. Journal of the American Society for Mass Spectrometry, 2009 , 20, 901-6	3.5	24

(2007-2009)

88	Experimental and computational studies of the macrocyclic effect of an auxiliary ligand on electron and proton transfers within ternary copper(II)-histidine complexes. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 972-84	3.5	5
87	Kinetics for tautomerizations and dissociations of triglycine radical cations. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 996-1005	3.5	24
86	Fragmentation mechanisms of oxidized peptides elucidated by SID, RRKM modeling, and molecular dynamics. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 1579-92	3.5	8
85	Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	170
84	In situ studies of soft- and reactive landing of mass-selected ions using infrared reflection absorption spectroscopy. <i>Analytical Chemistry</i> , 2009 , 81, 7302-8	7.8	37
83	Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry. Analytical Chemistry, 2009 , 81, 1512-21	7.8	60
82	Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7931-42	3.6	87
81	Surface Modification Using Reactive Landing of Mass-Selected Ions. <i>Particle Acceleration and Detection</i> , 2009 , 37-65	0.5	9
80	Experimental and theoretical studies of the structures and interactions of vancomycin antibiotics with cell wall analogues. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13013-22	16.4	24
79	Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1079-90	3.6	101
78	Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1512-22	3.6	72
77	High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1009-22	3.6	139
76	The effect of the secondary structure on dissociation of peptide radical cations: fragmentation of angiotensin III and its analogues. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12468-78	3.4	23
75	The effect of solvent on the analysis of secondary organic aerosol using electrospray ionization mass spectrometry. <i>Environmental Science & Environmental Science & Environme</i>	10.3	79
74	Energetics and dynamics of electron transfer and proton transfer in dissociation of metal(III)(salen)-peptide complexes in the gas phase. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3218-30	16.4	50
73	Helical peptide arrays on self-assembled monolayer surfaces through soft and reactive landing of mass-selected ions. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6678-80	16.4	53
72	Helical Peptide Arrays on Self-Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass-Selected Ions. <i>Angewandte Chemie</i> , 2008 , 120, 6780-6782	3.6	5
71	Design and performance of an instrument for soft landing of biomolecular ions on surfaces. Analytical Chemistry, 2007, 79, 6566-74	7.8	53

70	Covalent immobilization of peptides on self-assembled monolayer surfaces using soft-landing of mass-selected ions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8682-3	16.4	53
69	Charge-remote fragmentation of odd-electron peptide ions. <i>Analytical Chemistry</i> , 2007 , 79, 6607-14	7.8	86
68	Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10580-8	2.8	23
67	First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1822	0 <i>-</i> 31822	5 ³⁸
66	Is dissociation of peptide radical cations an ergodic process?. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9598-9	16.4	52
65	Effect of the surface morphology on the energy transfer in ionBurface collisions. <i>International Journal of Mass Spectrometry</i> , 2007 , 265, 124-129	1.9	7
64	Charge retention by peptide ions soft-landed onto self-assembled monolayer surfaces. <i>International Journal of Mass Spectrometry</i> , 2007 , 265, 237-243	1.9	33
63	Evaluation of the influence of amino acid composition on the propensity for collision-induced dissociation of model peptides using molecular dynamics simulations. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 1625-37	3.5	8
62	Electronic structure and fragmentation properties of [Fe4S4(SEt)4½(SSEt)x]2\(\textit{International}\) Journal of Mass Spectrometry, 2007 , 263, 260-266	1.9	6
61	Peptide ozonolysis: product structures and relative reactivities for oxidation of tyrosine and histidine residues. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1289-98	3.5	17
60	Peptide Radical Cations 2006 , 301-335		32
59	Photodissociation of Biomolecule Ions: Progress, Possibilities, and Perspectives Coming from Small-Ion Models 2006 , 337-377		7
58	Protein Structure and Folding in the Gas Phase: Ubiquitin and Cytochrome c 2006, 177-212		16
57	Intramolecular Vibrational Energy Redistribution and Ergodicity of Biomolecular Dissociation 2006 , 23	9-275	3
56	Probing the Electronic Structure of Fe?S Clusters: Ubiquitous Electron Transfer Centers in Metalloproteins Using Anion Photoelectron Spectroscopy in the Gas Phase 2006 , 63-117		3
55	Energetics and dynamics of fragmentation of protonated leucine enkephalin from time- and energy-resolved surface-induced dissociation studies. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 8554-	6 2 .8	49
54	Soft-landing of peptides onto self-assembled monolayer surfaces. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 1678-87	2.8	55
53	Chemical Dynamics Simulations of Energy Transfer and Unimolecular Decomposition in Collision-Induced Dissociation (CID) and Surface-Induced Dissociation (SID) 2006 , 379-432		3

52	Ion Soft Landing: Instrumentation, Phenomena, and Applications 2006, 433-474		6
51	Electron Capture Dissociation and Other IonElectron Fragmentation Reactions 2006, 475-517		10
50	Thermochemistry Studies of Biomolecules 2006 , 565-617		
49	Energy and Entropy Effects in Gas-Phase Dissociation of Peptides and Proteins 2006 , 619-665		7
48	Mechanisms of peptide fragmentation from time- and energy-resolved surface-induced dissociation studies: Dissociation of angiotensin analogs. <i>International Journal of Mass Spectrometry</i> , 2006 , 249-250, 462-472	1.9	28
47	Collision-induced dissociation of [4Fe-4S] cubane cluster complexes: [Fe4S4Cl4 $\[mathbb{k}$ (SC2H5)x]2 $\[mathbb{l}$ 1 $\[mathbb{l}$ 10 (x = 0 $\[mathbb{l}$ 2). International Journal of Mass Spectrometry, 2006 , 255-256, 102-110	1.9	15
46	Protein identification via surface-induced dissociation in an FT-ICR mass spectrometer and a patchwork sequencing approach. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 700-9	3.5	18
45	Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer. <i>Analytical Chemistry</i> , 2005 , 77, 3452-60	7.8	51
44	Ion/surface reactions and ion soft-landing. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 1490-500	3.6	109
43	Activation of large ions in FT-ICR mass spectrometry. <i>Mass Spectrometry Reviews</i> , 2005 , 24, 135-67	11	170
42	Fragmentation energetics for angiotensin II and its analogs from time- and energy-resolved surface-induced dissociation studies. <i>International Journal of Mass Spectrometry</i> , 2004 , 234, 89-99	1.9	46
41	Relative proton affinities from kinetic energy release distributions for dissociation of proton-bound dimers. <i>International Journal of Mass Spectrometry</i> , 2004 , 233, 223-231	1.9	3
40	Isolation, characterization of an intermediate in an oxygen atom-transfer reaction, and the determination of the bond dissociation energy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 860	14 <u>6</u> 4	45
39	Surface-induced dissociation of ions produced by matrix-assisted laser desorption/ionization in a fourier transform ion cyclotron resonance mass spectrometer. <i>Analytical Chemistry</i> , 2004 , 76, 351-6	7.8	13
38	Energetics and dynamics of peptide fragmentation from multiple-collision activation and surface-induced dissociation studies. <i>European Journal of Mass Spectrometry</i> , 2004 , 10, 259-67	1.1	25
37	Collisional activation of peptide ions in FT-ICR mass spectrometry. <i>Mass Spectrometry Reviews</i> , 2003 , 22, 158-81	11	173
36	Surface-induced dissociation of peptide ions: kinetics and dynamics. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 1340-7	3.5	70
35	Energetics of selective cleavage at acidic residues studied by time- and energy-resolved surface-induced dissociation in FT-ICR MS. <i>International Journal of Mass Spectrometry</i> , 2003 , 222, 313-32	2 7 .9	43

34	Shattering of Peptide ions on self-assembled monolayer surfaces. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1625-32	16.4	90
33	Energy transfer in collisions of peptide ions with surfaces. <i>Journal of Chemical Physics</i> , 2003 , 119, 3413-3	3 4 .2 ₉ 0	67
32	Entropy Is the Major Driving Force for Fragmentation of Proteins and ProteinLigand Complexes in the Gas Phase. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 5836-5839	2.8	26
31	Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: instrument design and evaluation. <i>Analytical Chemistry</i> , 2002 , 74, 3255-61	7.8	96
30	Fragmentation energetics of small peptides from multiple-collision activation and surface-induced dissociation in FT-ICR MS. <i>International Journal of Mass Spectrometry</i> , 2002 , 219, 189-201	1.9	53
29	Dissociation of noncovalent protein complexes by triple quadrupole tandem mass spectrometry: comparison of Monte Carlo simulation and experiment. <i>International Journal of Mass Spectrometry</i> , 2002 , 221, 245-262	1.9	16
28	On the Relative Stability of Singly Protonated des-Arg1- and des-Arg9-Bradykinins Journal of Physical Chemistry A, 2002, 106, 9832-9836	2.8	28
27	Relative Proton Affinities from Kinetic Energy Release Distributions for Dissociation of Proton-Bound Dimers. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 12051-12057	2.8	13
26	Surface-Induced Dissociation of the Benzene Molecular Cation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 2781-2788	2.8	18
25	On the efficiency of energy transfer in collisional activation of small peptides. <i>Journal of Chemical Physics</i> , 2002 , 116, 4302-4310	3.9	48
24	Kinetic energy release distributions in mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2001 , 36, 459-7	7 8 .2	109
23	Comparative Study of Collision-Induced and Surface-Induced Dissociation. 2. Fragmentation of Small Alanine-Containing Peptides in FT-ICR MS. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1895-1900	3.4	78
22	Internal energy distributions resulting from sustained off-resonance excitation in FTMS. I. Fragmentation of the bromobenzene radical cation. <i>International Journal of Mass Spectrometry</i> , 2000 , 195-196, 285-302	1.9	76
21	The Theoretical Basis of the Kinetic Method from the Point of View of Finite Heat Bath Theory. Journal of Physical Chemistry A, 2000, 104, 8829-8837	2.8	44
20	Internal Energy Distributions Resulting from Sustained Off-Resonance Excitation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. II. Fragmentation of the 1-Bromonaphthalene Radical Cation. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 5484-5494	2.8	69
19	A Comparative Study of Collision-Induced and Surface-Induced Dissociation. 1. Fragmentation of Protonated Dialanine. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9703-9714	16.4	127
18	Mass spectrometric study of unimolecular decompositions of endohedral fullerenes. <i>International Journal of Mass Spectrometry</i> , 1999 , 185-187, 61-73	1.9	26
17	Kinetic energy release for metastable fullerene ions. <i>International Journal of Mass Spectrometry</i> , 1999 , 185-187, 813-823	1.9	36

LIST OF PUBLICATIONS

16	Kinetic energy release distributions and evaporation energies for metastable fullerene ions. <i>Chemical Physics Letters</i> , 1999 , 303, 379-386	2.5	47
15	Kinetic Energy Releases and Electron-Induced Decay of C60z+. <i>European Journal of Mass Spectrometry</i> , 1999 , 5, 477		21
14	An artificial molecule of Ne2 inside C70. Chemical Physics Letters, 1998, 285, 7-9	2.5	51
13	An NMR Study of He2Inside C70. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6380-6383	16.4	69
12	Mass Spectrometric Studies of Fullerene Ion Beams. Israel Journal of Chemistry, 1997, 37, 467-474	3.4	2
11	Time-resolved kinetic energy releases for C60⊞ -rC58⊞ + C2. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1997 , 161, L7-L11		16
10	Time-resolved metastable fractions of fullerenes. Chemical Physics Letters, 1997, 277, 564-570	2.5	25
9	Time-resolved appearance energies for fragment ions from C60. <i>Chemical Physics Letters</i> , 1996 , 252, 277-280	2.5	23
8	Kinetic energy releases upon dissociation of endohedral fullerene cations. <i>Chemical Physics Letters</i> , 1995 , 242, 249-252	2.5	38
7	Ion source trapping in conjunction with two sector mass spectrometry: time-resolved CAD. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1994 , 133, L11-L14		5
6	Is n = 60 a magic number for C+n clusters or part of a magic shell?. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1994 , 138, 95-106		18
5	Time-resolved dissociation of bromonaphthalene ion studied by TPIMS and TRPD. Heat of formation of naphthyl ion. <i>Journal of the American Chemical Society</i> , 1993 , 115, 7402-7406	16.4	21
4	Threshold formation of benzylium (Bz+) and tropylium (Tr+) from toluene. Nonstatistical behavior in Franck-Condon gaps. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 12291-12295		22
3	Metastable fractions in fullerenes. <i>Organic Mass Spectrometry</i> , 1993 , 28, 1001-1003		8
2	Is the tropylium ion (Tr+) formed from toluene at its thermochemical threshold?. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1993 , 125, R7-R11		58
1	Is the resilience of C+60 towards decomposition a question of time?. <i>Chemical Physics Letters</i> , 1992 , 200, 406-410	2.5	25