José Carlos R Alcantud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566213/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	altimg="sil.gif" overflow="scroll"> <mml:mrow><mml:mo>(</mml:mo><mml:mi) 0.784314="" 1="" etqq1="" ove<="" rgbt="" td="" tj=""><td>erlock 10 T 6.9</td><td>f 50 752 Td 179</td></mml:mi)></mml:mrow>	erlock 10 T 6.9	f 50 752 Td 179
2	set models and applications in multi-attribute group decision-making. Information Sciences, 2019, 476, 290-318. A survey of decision making methods based on certain hybrid soft set models. Artificial Intelligence Review, 2017, 47, 507-530.	15.7	169
3	On a novel uncertain soft set model: Z -soft fuzzy rough set model and corresponding decision making methods. Applied Soft Computing Journal, 2017, 56, 446-457.	7.2	164
4	A novel soft rough set: Soft rough hemirings and corresponding multicriteria group decision making. Applied Soft Computing Journal, 2017, 54, 393-402.	7.2	162
5	N-soft sets and their decision making algorithms. Soft Computing, 2018, 22, 3829-3842.	3.6	145
6	Covering-based generalized IF rough sets with applications to multi-attribute decision-making. Information Sciences, 2019, 478, 275-302.	6.9	137
7	Covering-Based Variable Precision \$(mathcal {I},mathcal {T})\$-Fuzzy Rough Sets With Applications to Multiattribute Decision-Making. IEEE Transactions on Fuzzy Systems, 2019, 27, 1558-1572.	9.8	132
8	A novel type of soft rough covering and its application to multicriteria group decision making. Artificial Intelligence Review, 2019, 52, 2381-2410.	15.7	125
9	Group decision-making methods based on hesitant N-soft sets. Expert Systems With Applications, 2019, 115, 95-105.	7.6	115
10	A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set. Information Fusion, 2016, 29, 142-148.	19.1	111
11	Fuzzy N-soft sets: A novel model with applications. Journal of Intelligent and Fuzzy Systems, 2018, 35, 4757-4771.	1.4	109
12	A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making. Soft Computing, 2017, 21, 1923-1936.	3.6	107
13	A survey of decision making methods based on two classes of hybrid soft set models. Artificial Intelligence Review, 2018, 49, 511-529.	15.7	106
14	Decomposition theorems and extension principles for hesitant fuzzyÂsets. Information Fusion, 2018, 41, 48-56.	19.1	104
15	A new rough set theory: rough soft hemirings. Journal of Intelligent and Fuzzy Systems, 2015, 28, 1687-1697 Fuzzy <mmi:math <="" altimg="si429.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.4</td><td>99</td></mmi:math>	1.4	99
16	overflow="scroll"> <mml:mrow><mml:mi>l2</mml:mi></mml:mrow> -covering based <mml:math <br="" altimg="si430.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mo stretchy="true">(</mml:mo><mml:mi) 0="" 10<="" etqq0="" overlock="" rgbt="" td="" tj=""><td>) Tf65® 137</td><td>7 Td1(mathvar</td></mml:mi)></mml:mrow></mml:math>) Tf6 5® 137	7 T d1 (mathvar
17	A novel fuzzy rough set model with fuzzy neighborhood operators. Information Sciences, 2021, 544, 266-297.	6.9	95

Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Information Sciences, 2020, 514, 106-117.

6.9 93

#	Article	IF	CITATIONS
19	A survey of parameter reduction of soft sets and corresponding algorithms. Artificial Intelligence Review, 2019, 52, 1839-1872.	15.7	90
20	A novel decision-making approach based on three-way decisions in fuzzy information systems. Information Sciences, 2020, 541, 362-390.	6.9	89
21	Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information. Neural Computing and Applications, 2021, 33, 5675-5703.	5.6	89
22	Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artificial Intelligence Review, 2020, 53, 167-198.	15.7	87
23	An \$N\$-Soft Set Approach to Rough Sets. IEEE Transactions on Fuzzy Systems, 2020, 28, 2996-3007.	9.8	84
24	On Multicriteria Decision-Making Method Based on a Fuzzy Rough Set Model With Fuzzy \$alpha\$-Neighborhoods. IEEE Transactions on Fuzzy Systems, 2021, 29, 2491-2505.	9.8	83
25	Covering-based variable precision fuzzy rough sets with PROMETHEE-EDAS methods. Information Sciences, 2020, 538, 314-336.	6.9	82
26	Some formal relationships among soft sets, fuzzy sets, and their extensions. International Journal of Approximate Reasoning, 2016, 68, 45-53.	3.3	79
27	Fuzzy soft \$\$eta\$\$ β -covering based fuzzy rough sets and corresponding decision-making applications. International Journal of Machine Learning and Cybernetics, 2019, 10, 1487-1502.	3.6	78
28	TOPSIS method based on a fuzzy covering approximation space: An application to biological nano-materials selection. Information Sciences, 2019, 502, 297-329.	6.9	76
29	Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problems. Information Sciences, 2020, 517, 315-339.	6.9	75
30	Necessary and possible hesitant fuzzy sets: A novel model for group decision making. Information Fusion, 2019, 46, 63-76.	19.1	74
31	New decision-making hybrid model: intuitionistic fuzzy N-soft rough sets. Soft Computing, 2019, 23, 9853-9868.	3.6	71
32	Group Decision-Making Based on the VIKOR Method with Trapezoidal Bipolar Fuzzy Information. Symmetry, 2019, 11, 1313.	2.2	70
33	Covering-based general multigranulation intuitionistic fuzzy rough sets and corresponding applications to multi-attribute group decision-making. Information Sciences, 2019, 494, 114-140.	6.9	70
34	Hesitant fuzzy N-soft sets: A new model with applications in decision-making. Journal of Intelligent and Fuzzy Systems, 2019, 36, 6113-6127.	1.4	69
35	Novel classes of fuzzy soft \$\$eta \$\$ \hat{l}^2 -coverings-based fuzzy rough sets with applications to multi-criteria fuzzy group decision making. Soft Computing, 2019, 23, 5327-5351.	3.6	66
36	Dis&approval voting: a characterization. Social Choice and Welfare, 2014, 43, 1-10.	0.8	65

#	Article	IF	CITATIONS
37	An optimization study based on Dijkstra algorithm for a network with trapezoidal picture fuzzy numbers. Neural Computing and Applications, 2021, 33, 1329-1342.	5.6	65
38	Group decision-making framework using complex Pythagorean fuzzy information. Neural Computing and Applications, 2021, 33, 2085-2105.	5.6	64
39	TOPSIS-WAA method based on a covering-based fuzzy rough set: An application to rating problem. Information Sciences, 2020, 539, 397-421.	6.9	61
40	A New Criterion for Soft Set Based Decision Making Problems under Incomplete Information. International Journal of Computational Intelligence Systems, 2017, 10, 394.	2.7	61
41	Digraph and matrix approach for risk evaluations under Pythagorean fuzzy information. Expert Systems With Applications, 2021, 170, 114518.	7.6	60
42	A three-way decision approach with probabilistic dominance relations under intuitionistic fuzzy information. Information Sciences, 2022, 582, 114-145.	6.9	57
43	An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information. Expert Systems With Applications, 2022, 200, 116945.	7.6	56
44	Reviews on decision making methods based on (fuzzy) soft sets and rough soft sets. Journal of Intelligent and Fuzzy Systems, 2015, 29, 1169-1176.	1.4	55
45	Probabilistic soft sets and dual probabilistic soft sets in decision-making. Neural Computing and Applications, 2019, 31, 397-407.	5.6	55
46	Covering based multigranulation fuzzy rough sets and corresponding applications. Artificial Intelligence Review, 2020, 53, 1093-1126.	15.7	53
47	Three-way decisions based multi-attribute decision making with probabilistic dominance relations. Information Sciences, 2021, 559, 75-96.	6.9	53
48	Certain types of soft coverings based rough sets with applications. International Journal of Machine Learning and Cybernetics, 2019, 10, 1065-1076.	3.6	52
49	PF-TOPSIS method based on CPFRS models: An application to unconventional emergency events. Computers and Industrial Engineering, 2020, 139, 106192.	6.3	52
50	Three-way multi-attribute decision making under hesitant fuzzy environments. Information Sciences, 2021, 552, 328-351.	6.9	52
51	Soft Open Bases and a Novel Construction of Soft Topologies from Bases for Topologies. Mathematics, 2020, 8, 672.	2.2	50
52	Hesitant Fuzzy Worth: An innovative ranking methodology for hesitant fuzzy subsets. Applied Soft Computing Journal, 2016, 38, 232-243.	7.2	49
53	Multi-Attribute Decision-Making Based on m-Polar Fuzzy Hamacher Aggregation Operators. Symmetry, 2019, 11, 1498.	2.2	48
54	Covering-based intuitionistic fuzzy rough sets and applications in multi-attribute decision-making. Artificial Intelligence Review, 2020, 53, 671-701.	15.7	47

4

#	Article	IF	CITATIONS
55	Separable fuzzy soft sets and decision making with positive and negative attributes. Applied Soft Computing Journal, 2017, 59, 586-595.	7.2	46
56	An MADM approach to covering-based variable precision fuzzy rough sets: an application to medical diagnosis. International Journal of Machine Learning and Cybernetics, 2020, 11, 2181-2207.	3.6	46
57	A three-way decision methodology to multi-attribute decision-making in multi-scale decision information systems. Information Sciences, 2021, 568, 175-198.	6.9	46
58	Multi-attribute decision-making with q-rung picture fuzzy information. Granular Computing, 2022, 7, 197-215.	8.0	45
59	A hybrid decisionâ€making framework under complex spherical fuzzy prioritized weighted aggregation operators. Expert Systems, 2021, 38, e12712.	4.5	44
60	Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision Making Procedure for the Valuation of Assets. Symmetry, 2017, 9, 253.	2.2	42
61	A Study on Hypergraph Representations of Complex Fuzzy Information. Symmetry, 2019, 11, 1381.	2.2	42
62	Novel decision-making method based on bipolar neutrosophic information. Soft Computing, 2019, 23, 9955-9977.	3.6	40
63	A novel multi-granularity three-way decision making approach in q-rung orthopair fuzzy information systems. International Journal of Approximate Reasoning, 2021, 138, 161-187.	3.3	38
64	A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information. Neural Computing and Applications, 2022, 34, 8069-8102.	5.6	38
65	Centroid Transformations of Intuitionistic Fuzzy Values Based on Aggregation Operators. Mathematics, 2018, 6, 215.	2.2	37
66	A three-way decision method based on fuzzy rough set models under incomplete environments. Information Sciences, 2021, 577, 22-48.	6.9	37
67	Best concept selection in design process: An application of generalized intuitionistic fuzzy soft sets. Journal of Intelligent and Fuzzy Systems, 2018, 35, 5707-5720.	1.4	36
68	Attributes reductions of bipolar fuzzy relation decision systems. Neural Computing and Applications, 2020, 32, 10051-10071.	5.6	36
69	The multi-fuzzy N-soft set and its applications to decision-making. Neural Computing and Applications, 2021, 33, 11437-11446.	5.6	35
70	Fuzzy parameterized fuzzy soft sets and decision making. International Journal of Machine Learning and Cybernetics, 2016, 7, 1207-1212.	3.6	34
71	Complex fermatean fuzzy N-soft sets: a new hybrid model with applications. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 8765-8798.	4.9	34
72	Parameter reductions in <i>N</i> â€soft sets and their applications in <scp>decisionâ€making</scp> . Expert Systems, 2021, 38, .	4.5	32

#	Article	IF	CITATIONS
73	Group decision-making with Fermatean fuzzy soft expert knowledge. Artificial Intelligence Review, 2022, 55, 5349-5389.	15.7	32
74	Analysis of survival for lung cancer resections cases with fuzzy and soft set theory in surgical decision making. PLoS ONE, 2019, 14, e0218283.	2.5	31
75	Fuzzy Measures and Choquet Integrals Based on Fuzzy Covering Rough Sets. IEEE Transactions on Fuzzy Systems, 2022, 30, 2360-2374.	9.8	31
76	Improved generalized dissimilarity measureâ€based VIKOR method for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 2022, 37, 1807-1845.	5.7	31
77	Incomplete three-way multi-attribute group decision making based on adjustable multigranulation Pythagorean fuzzy probabilistic rough sets. International Journal of Approximate Reasoning, 2022, 147, 40-59.	3.3	31
78	Fuzzy politics I: The genesis of parties. Fuzzy Sets and Systems, 2018, 349, 71-98.	2.7	30
79	Novel MCGDM analysis under m-polar fuzzy soft expert sets. Neural Computing and Applications, 2021, 33, 12051-12071.	5.6	30
80	An investigation on Wu-Leung multi-scale information systems and multi-expert group decision-making. Expert Systems With Applications, 2021, 170, 114542.	7.6	30
81	Characterization of the existence of maximal elements of acyclic relations. Economic Theory, 2002, 19, 407-416.	0.9	29
82	Revealed Indifference and Models of Choice Behavior. Journal of Mathematical Psychology, 2002, 46, 418-430.	1.8	28
83	Multi-Criteria Group Decision-Making Using an m-Polar Hesitant Fuzzy TOPSIS Approach. Symmetry, 2019, 11, 795.	2.2	28
84	The problem of collective identity in a fuzzy environment. Fuzzy Sets and Systems, 2017, 315, 57-75.	2.7	27
85	Parameter Reductions of Bipolar Fuzzy Soft Sets with Their Decision-Making Algorithms. Symmetry, 2019, 11, 949.	2.2	25
86	Minkowski Weighted Score Functions of Intuitionistic Fuzzy Values. Mathematics, 2020, 8, 1143.	2.2	25
87	Hesitant fuzzy N-soft ELECTRE-II model: a new framework for decision-making. Neural Computing and Applications, 2021, 33, 7505-7520.	5.6	25
88	OWA aggregation operators and multi-agent decisions with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e16957" altimg="si78.svg"><mml:mi>N</mml:mi>-soft sets. Expert Systems With Applications, 2022, 203, 117430</mml:math 	7.6	25
89	The semantics of N-soft sets, their applications, and a coda about three-way decision. Information Sciences, 2022, 606, 837-852.	6.9	25
90	A novel multi-attribute decision-making method based on fuzzy rough sets. Computers and Industrial Engineering, 2021, 155, 107136.	6.3	24

#	Article	IF	CITATIONS
91	A regret theory-based three-way decision approach with three strategies. Information Sciences, 2022, 595, 89-118.	6.9	24
92	A new consensus ranking approach for correlated ordinal information based on Mahalanobis distance. Information Sciences, 2016, 372, 546-564.	6.9	23
93	Dual Extended Hesitant Fuzzy Sets. Symmetry, 2019, 11, 714.	2.2	23
94	Parameter reduction analysis under interval-valued m-polar fuzzy soft information. Artificial Intelligence Review, 2021, 54, 5541-5582.	15.7	23
95	A novel three-way decision approach under hesitant fuzzy information. Information Sciences, 2021, 578, 482-506.	6.9	23
96	On measures of cohesiveness under dichotomous opinions: Some characterizations of approval consensus measures. Information Sciences, 2013, 240, 45-55.	6.9	22
97	Glaucoma Diagnosis: A Soft Set Based Decision Making Procedure. Lecture Notes in Computer Science, 2015, , 49-60.	1.3	22
98	Complex fuzzy sets with applications in signals. Computational and Applied Mathematics, 2019, 38, 1.	2.2	22
99	PROMETHEE II method based on variable precision fuzzy rough sets with fuzzy neighborhoods. Artificial Intelligence Review, 2021, 54, 1281-1319.	15.7	21
100	Richter–Peleg multi-utility representations of preorders. Theory and Decision, 2016, 80, 443-450.	1.0	20
101	Hybrid Decision-Making Frameworks under Complex Spherical Fuzzy <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>N</mi> -Soft Sets. Journal of Mathematics, 2021, 2021, 1-46.</math 	1.0	20
102	An axiomatically supported divergence measures for qâ€rung orthopair fuzzy sets. International Journal of Intelligent Systems, 2021, 36, 6133-6155.	5.7	20
103	A novel three-way decision approach in decision information systems. Information Sciences, 2022, 584, 1-30.	6.9	20
104	A multimodal adaptive approach on soft set based diagnostic risk prediction system. Journal of Intelligent and Fuzzy Systems, 2018, 34, 1609-1618.	1.4	19
105	Hesitant linguistic expression soft sets: Application to group decision making. Computers and Industrial Engineering, 2019, 136, 575-590.	6.3	19
106	The Relationship Between Fuzzy Soft and Soft Topologies. International Journal of Fuzzy Systems, 2022, 24, 1653-1668.	4.0	19
107	A kind of new rough set: Rough soft sets and rough soft rings. Journal of Intelligent and Fuzzy Systems, 2015, 30, 475-483.	1.4	18
108	Hybrid multi-attribute decision-making model based on (m, N)-soft rough sets. Journal of Intelligent and Fuzzy Systems, 2019, 36, 6325-6342.	1.4	18

#	Article	IF	CITATIONS
109	Multi-granular soft rough covering sets. Soft Computing, 2020, 24, 9391-9402.	3.6	18
110	Attributes reduction algorithms for m-polar fuzzy relation decision systems. International Journal of Approximate Reasoning, 2022, 140, 232-254.	3.3	18
111	Inequality averse criteria for evaluating infinite utility streams: The impossibility of Weak Pareto. Journal of Economic Theory, 2012, 147, 353-363.	1.1	17
112	Sequential rationalization of multivalued choice. Mathematical Social Sciences, 2015, 74, 29-33.	0.5	17
113	Soft Set Theory for Decision Making in Computational Biology Under Incomplete Information. IEEE Access, 2019, 7, 18183-18193.	4.2	17
114	Novel classes of coverings based multigranulation fuzzy rough sets and corresponding applications to multiple attribute group decision-making. Artificial Intelligence Review, 2020, 53, 6197-6256.	15.7	17
115	An m-Polar Fuzzy PROMETHEE Approach for AHP-Assisted Group Decision-Making. Mathematical and Computational Applications, 2020, 25, 26.	1.3	17
116	Multi-granulation hesitant fuzzy rough sets and corresponding applications. Soft Computing, 2019, 23, 13085-13103.	3.6	16
117	Maximal association analysis using logical formulas over soft sets. Expert Systems With Applications, 2020, 159, 113557.	7.6	16
118	Paretian evaluation of infinite utility streams: An egalitarian criterion. Economics Letters, 2010, 106, 209-211.	1.9	15
119	Evaluations of Infinite Utility Streams: <scp>P</scp> areto Efficient and Egalitarian Axiomatics. Metroeconomica, 2013, 64, 432-447.	1.0	15
120	Another approach to rough soft hemirings and corresponding decision making. Soft Computing, 2017, 21, 3769-3780.	3.6	15
121	L-fuzzifying approximation operators derived from general L-fuzzifying neighborhood systems. International Journal of Machine Learning and Cybernetics, 2021, 12, 1343-1367.	3.6	15
122	Characterization of the existence of semicontinuous weak utilities. Journal of Mathematical Economics, 1999, 32, 503-509.	0.8	14
123	A unifying model to measure consensus solutions in a society. Mathematical and Computer Modelling, 2013, 57, 1876-1883.	2.0	14
124	Intertemporal Hesitant Fuzzy Soft Sets: Application to Group Decision Making. International Journal of Fuzzy Systems, 2020, 22, 619-635.	4.0	14
125	Three-way decision based on canonical soft sets of hesitant fuzzy sets. AIMS Mathematics, 2022, 7, 2061-2083.	1.6	14
126	A new soft union set: characterizations of hemirings. International Journal of Machine Learning and Cybernetics, 2017, 8, 525-535.	3.6	13

#	Article	IF	CITATIONS
127	Covering-based variable precision L-fuzzy rough sets based on residuated lattices and corresponding applications. International Journal of Machine Learning and Cybernetics, 2021, 12, 2407-2429.	3.6	13
128	An Operational Characterization of Soft Topologies by Crisp Topologies. Mathematics, 2021, 9, 1656.	2.2	13
129	Caliber and Chain Conditions in Soft Topologies. Mathematics, 2021, 9, 2349.	2.2	13
130	Continuous Utility Functions Through Scales. Theory and Decision, 2008, 64, 479-494.	1.0	12
131	A cardinal dissensus measure based on the Mahalanobis distance. European Journal of Operational Research, 2016, 251, 575-585.	5.7	12
132	Analysis of Social Networks, Communication Networks and Shortest Path Problems in the Environment of Interval-Valued q-Rung Ortho Pair Fuzzy Graphs. International Journal of Fuzzy Systems, 2019, 21, 1687-1708.	4.0	12
133	Fuzzy soft set based decision making: a novel alternative approach. , 0, , .		12
134	Continuous representation by a money-metric function. Mathematical Social Sciences, 2001, 41, 365-373.	0.5	11
135	Incomplete Soft Sets: New Solutions for Decision Making Problems. Advances in Intelligent Systems and Computing, 2016, , 9-17.	0.6	11
136	A segment-based approach to the analysis of project evaluation problems by hesitant fuzzy sets. International Journal of Computational Intelligence Systems, 2016, 9, 325-339.	2.7	11
137	Rational fuzzy and sequential fuzzy choice. Fuzzy Sets and Systems, 2017, 315, 76-98.	2.7	11
138	A ranking method with a preference relation based on the PROMETHEE method in incomplete multi-scale information systems. Information Sciences, 2022, 608, 1261-1282.	6.9	11
139	The impossibility of social evaluations of infinite streams with strict inequality aversion. Economic Theory Bulletin, 2013, 1, 123-130.	0.5	10
140	Intertemporal Choice of Fuzzy Soft Sets. Symmetry, 2018, 10, 371.	2.2	10
141	Softarisons: theory and practice. Neural Computing and Applications, 2021, 33, 16759-16771.	5.6	10
142	Liberal approaches to ranking infinite utility streams: when can we avoid interference?. Social Choice and Welfare, 2013, 41, 381-396.	0.8	9
143	The relationship between soft sets and fuzzy sets and its application. Journal of Intelligent and Fuzzy Systems, 2019, 36, 3751-3764.	1.4	9
144	Non-binary choice in a non-deterministic model. Economics Letters, 2002, 77, 117-123.	1.9	8

#	Article	IF	CITATIONS
145	Applications of a kind of novel Z-soft fuzzy rough ideals to hemirings. Journal of Intelligent and Fuzzy Systems, 2017, 32, 2071-2082.	1.4	8
146	Covering-based soft fuzzy rough theory and its application to multiple criteria decision making. Computational and Applied Mathematics, 2019, 38, 1.	2.2	8
147	A selection of maximal elements under non-transitive indifferences. Journal of Mathematical Psychology, 2010, 54, 481-484.	1.8	7
148	Pairwise Dichotomous Cohesiveness Measures. Group Decision and Negotiation, 2015, 24, 833-854.	3.3	7
149	An Adaptive Soft Set Based Diagnostic Risk Prediction System. Advances in Intelligent Systems and Computing, 2018, , 149-162.	0.6	7
150	Constructive utility functions on Banach spaces. Journal of Mathematical Analysis and Applications, 2009, 350, 590-600.	1.0	6
151	Fuzzy Soft Set Decision Making Algorithms: Some Clarifications and Reinterpretations. Lecture Notes in Computer Science, 2016, , 479-488.	1.3	6
152	Expanded hesitant fuzzy sets and group decision making. , 2017, , .		6
153	A study on soft rough semigroups and corresponding decision making applications. Open Mathematics, 2017, 15, 1400-1413.	1.0	6
154	Multi-Granulation Picture Hesitant Fuzzy Rough Sets. Symmetry, 2020, 12, 362.	2.2	6
155	An algorithm to compute the strength of competing interactions in the Bering Sea based on pythagorean fuzzy hypergraphs. Neural Computing and Applications, 2022, 34, 1099-1121.	5.6	6
156	Multi-criteria Optimization Technique with Complex Pythagorean Fuzzy N-soft Information. International Journal of Computational Intelligence Systems, 2021, 14, .	2.7	6
157	Preference through indifference: a topological approach. Journal of Mathematical Economics, 1999, 31, 543-551.	0.8	5
158	Maximality with or without binariness: Transfer-type characterizations. Mathematical Social Sciences, 2006, 51, 182-191.	0.5	5
159	Notes and Comments: Stochastic demand correspondences and their aggregation properties. Decisions in Economics and Finance, 2006, 29, 55-69.	1.8	5
160	Goodness-of-fit in optimizing a consumer model. Mathematical and Computer Modelling, 2010, 52, 1088-1094.	2.0	5
161	Fuzzy soft matrices on fuzzy soft multiset and its applications in optimization problems. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2311-2322.	1.4	5
162	The Soft Sets and Fuzzy Sets-Based Neural Networks and Application. IEEE Access, 2020, 8, 41615-41625.	4.2	5

#	Article	IF	CITATIONS
163	Intuitionistic fuzzy divergences: critical analysis and an application in figure skating. Neural Computing and Applications, 2022, 34, 9123-9146.	5.6	5
164	Consensus and the Act of Voting. Studies in Microeconomics, 2013, 1, 1-22.	0.6	4
165	A social choice approach to graded soft sets. , 2017, , .		4
166	Expanded Dual Hesitant Fuzzy Sets. , 2018, , .		4
167	Liberalism and dictatorship in the problem of fuzzy classification. International Journal of Approximate Reasoning, 2019, 110, 82-95.	3.3	4
168	A STUDY ON Z-SOFT ROUGH FUZZY SEMIGROUPS AND ITS DECISION-MAKING. , 2018, 8, 1-22.		4
169	New correlation coefficients for hesitant fuzzy sets. , 0, , .		4
170	Mining Temporal Association Rules with Temporal Soft Sets. Journal of Mathematics, 2021, 2021, 1-17.	1.0	4
171	Nash equilibria for non-binary choice rules. International Journal of Game Theory, 2007, 35, 455-464.	0.5	3
172	Ranking sets additively in decisional contexts: an axiomatic characterization. Theory and Decision, 2008, 64, 147-171.	1.0	3
173	Conditional ordering extensions. Economic Theory, 2009, 39, 495-503.	0.9	3
174	An axiomatic analysis of ranking sets under simple categorization. SERIEs, 2012, 3, 227-245.	1.4	3
175	Ordering infinite utility streams: Efficiency, continuity, and no impatience. Mathematical Social Sciences, 2014, 72, 33-40.	0.5	3
176	Conditional extensions of fuzzy preorders. Fuzzy Sets and Systems, 2015, 278, 3-19.	2.7	3
177	Collective identity functions with status quo. Mathematical Social Sciences, 2018, 93, 159-166.	0.5	3
178	Fuzzy Techniques for Decision Making. Symmetry, 2018, 10, 6.	2.2	3
179	A note on representability of consumer's behavior. Economic Theory, 2002, 20, 207-216.	0.9	2
180	On the existence of certainty equivalents of various relevant types. Journal of Applied Mathematics, 2003, 2003, 447-458.	0.9	2

José Carlos R Alcantud

#	Article	IF	CITATIONS
181	Mathematical utility theory and the representability of demand by continuous homogeneous functions. Portuguese Economic Journal, 2006, 5, 195-205.	1.0	2
182	Consensus measures for various informational bases. Three new proposals and two case studies from political science. Quality and Quantity, 2017, 51, 285-306.	3.7	2
183	Yet another characterization of the majority rule. Economics Letters, 2019, 177, 52-55.	1.9	2
184	Independent collective identity functions as voting rules. Theory and Decision, 2020, 89, 107-119.	1.0	2
185	A study on soft Z-congruence relations over hemirings. Journal of Intelligent and Fuzzy Systems, 2015, 30, 467-474.	1.4	1
186	Fuzzy preorders: conditional extensions, extensions and their representations. Fuzzy Optimization and Decision Making, 2016, 15, 371-396.	5.5	1
187	The Indirect-Utility Criterion for Ranking Opportunity Sets over Time. Symmetry, 2019, 11, 241.	2.2	1
188	Simple Majorities with Voice but No Vote. Group Decision and Negotiation, 2020, 29, 803-822.	3.3	1
189	A Linguistic Approach for Self-Perceived Health State: A Real Study for Diabetes Disease. Lecture Notes in Computer Science, 2015, , 71-81.	1.3	1
190	The Interplay Between Intergenerational Justice and Mathematical Utility Theory. Studies in Systems, Decision and Control, 2020, , 325-351.	1.0	1
191	On Some Types of Covering-Based â,,•, T -Fuzzy Rough Sets and Their Applications. Journal of Mathematics, 2021, 2021, 1-18.	1.0	1
192	Mixed choice structures, with applications to binary and non-binary optimization. Journal of Mathematical Economics, 2008, 44, 242-250.	0.8	0
193	Complete solution of the integrability problem for homothetic demand functions. International Journal of Economic Theory, 2010, 6, 263-271.	0.6	0
194	A new methodology to measure consensus. , 2010, , .		0
195	Nash equilibria without continuity of the choice rules. Acta Mathematica Scientia, 2011, 31, 1535-1540.	1.0	0
196	Finite sets of data compatible with multidimensional inequality measures. Information Sciences, 2014, 265, 85-90.	6.9	0
197	Some results on aggregation for fuzzy classification. , 2017, , .		0
198	Consistency Properties for Fuzzy Choice Functions: An Analysis with the Åukasiewicz T-Norm. Axioms, 2018, 7, 78.	1.9	0

#	Article	IF	CITATIONS
199	Decision Making Under Incompleteness Based on Soft Set Theory. Communications in Computer and Information Science, 2018, , 583-595.	0.5	0
200	On the Structure of Acyclic Binary Relations. Communications in Computer and Information Science, 2018, , 3-15.	0.5	0
201	An Advised Indirect-Utility Ranking of Opportunity Sets. Symmetry, 2021, 13, 1404.	2.2	0
202	Fuzzy choice functions, consistency, and sequential fuzzy choice. , 0, , .		0
203	Consistency Properties for Fuzzy Choice Functions: An Analysis with the Åukasiewicz t-norm. Communications in Computer and Information Science, 2018, , 323-331.	0.5	0